snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
23
23
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
24
24
  from snowflake.ml._internal import telemetry
25
25
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
26
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
- from snowflake.snowpark import DataFrame
28
+ from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
30
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
30
33
  from snowflake.ml.modeling._internal.estimator_utils import (
31
34
  gather_dependencies,
32
35
  original_estimator_has_callable,
33
36
  transform_snowml_obj_to_sklearn_obj,
34
37
  validate_sklearn_args,
35
38
  )
36
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
37
39
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
40
 
39
41
  from snowflake.ml.model.model_signature import (
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
53
55
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
54
56
 
55
57
 
56
-
57
58
  class IterativeImputer(BaseTransformer):
58
59
  r"""Multivariate imputer that estimates each feature from all the others
59
60
  For more details on this class, see [sklearn.impute.IterativeImputer]
@@ -61,6 +62,49 @@ class IterativeImputer(BaseTransformer):
61
62
 
62
63
  Parameters
63
64
  ----------
65
+
66
+ input_cols: Optional[Union[str, List[str]]]
67
+ A string or list of strings representing column names that contain features.
68
+ If this parameter is not specified, all columns in the input DataFrame except
69
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
70
+ parameters are considered input columns. Input columns can also be set after
71
+ initialization with the `set_input_cols` method.
72
+
73
+ label_cols: Optional[Union[str, List[str]]]
74
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
64
108
  estimator: estimator object, default=BayesianRidge()
65
109
  The estimator to use at each step of the round-robin imputation.
66
110
  If `sample_posterior=True`, the estimator must support
@@ -162,42 +206,6 @@ class IterativeImputer(BaseTransformer):
162
206
  The imputed value is always `0` except when
163
207
  `initial_strategy="constant"` in which case `fill_value` will be
164
208
  used instead.
165
-
166
- input_cols: Optional[Union[str, List[str]]]
167
- A string or list of strings representing column names that contain features.
168
- If this parameter is not specified, all columns in the input DataFrame except
169
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
170
- parameters are considered input columns.
171
-
172
- label_cols: Optional[Union[str, List[str]]]
173
- A string or list of strings representing column names that contain labels.
174
- This is a required param for estimators, as there is no way to infer these
175
- columns. If this parameter is not specified, then object is fitted without
176
- labels (like a transformer).
177
-
178
- output_cols: Optional[Union[str, List[str]]]
179
- A string or list of strings representing column names that will store the
180
- output of predict and transform operations. The length of output_cols must
181
- match the expected number of output columns from the specific estimator or
182
- transformer class used.
183
- If this parameter is not specified, output column names are derived by
184
- adding an OUTPUT_ prefix to the label column names. These inferred output
185
- column names work for estimator's predict() method, but output_cols must
186
- be set explicitly for transformers.
187
-
188
- sample_weight_col: Optional[str]
189
- A string representing the column name containing the sample weights.
190
- This argument is only required when working with weighted datasets.
191
-
192
- passthrough_cols: Optional[Union[str, List[str]]]
193
- A string or a list of strings indicating column names to be excluded from any
194
- operations (such as train, transform, or inference). These specified column(s)
195
- will remain untouched throughout the process. This option is helpful in scenarios
196
- requiring automatic input_cols inference, but need to avoid using specific
197
- columns, like index columns, during training or inference.
198
-
199
- drop_input_cols: Optional[bool], default=False
200
- If set, the response of predict(), transform() methods will not contain input columns.
201
209
  """
202
210
 
203
211
  def __init__( # type: ignore[no-untyped-def]
@@ -234,7 +242,7 @@ class IterativeImputer(BaseTransformer):
234
242
  self.set_passthrough_cols(passthrough_cols)
235
243
  self.set_drop_input_cols(drop_input_cols)
236
244
  self.set_sample_weight_col(sample_weight_col)
237
- deps = set(SklearnWrapperProvider().dependencies)
245
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
238
246
  deps = deps | gather_dependencies(estimator)
239
247
  self._deps = list(deps)
240
248
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -258,13 +266,14 @@ class IterativeImputer(BaseTransformer):
258
266
  args=init_args,
259
267
  klass=sklearn.impute.IterativeImputer
260
268
  )
261
- self._sklearn_object = sklearn.impute.IterativeImputer(
269
+ self._sklearn_object: Any = sklearn.impute.IterativeImputer(
262
270
  **cleaned_up_init_args,
263
271
  )
264
272
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
265
273
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
266
274
  self._snowpark_cols: Optional[List[str]] = self.input_cols
267
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
275
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
276
+ self._autogenerated = True
268
277
 
269
278
  def _get_rand_id(self) -> str:
270
279
  """
@@ -320,54 +329,48 @@ class IterativeImputer(BaseTransformer):
320
329
  self
321
330
  """
322
331
  self._infer_input_output_cols(dataset)
323
- if isinstance(dataset, pd.DataFrame):
324
- assert self._sklearn_object is not None # keep mypy happy
325
- self._sklearn_object = self._handlers.fit_pandas(
326
- dataset,
327
- self._sklearn_object,
328
- self.input_cols,
329
- self.label_cols,
330
- self.sample_weight_col
331
- )
332
- elif isinstance(dataset, DataFrame):
333
- self._fit_snowpark(dataset)
334
- else:
335
- raise TypeError(
336
- f"Unexpected dataset type: {type(dataset)}."
337
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
338
- )
332
+ if isinstance(dataset, DataFrame):
333
+ session = dataset._session
334
+ assert session is not None # keep mypy happy
335
+ # Validate that key package version in user workspace are supported in snowflake conda channel
336
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
337
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
338
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
339
+
340
+ # Specify input columns so column pruning will be enforced
341
+ selected_cols = self._get_active_columns()
342
+ if len(selected_cols) > 0:
343
+ dataset = dataset.select(selected_cols)
344
+
345
+ self._snowpark_cols = dataset.select(self.input_cols).columns
346
+
347
+ # If we are already in a stored procedure, no need to kick off another one.
348
+ if SNOWML_SPROC_ENV in os.environ:
349
+ statement_params = telemetry.get_function_usage_statement_params(
350
+ project=_PROJECT,
351
+ subproject=_SUBPROJECT,
352
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
353
+ api_calls=[Session.call],
354
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
355
+ )
356
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
357
+ pd_df.columns = dataset.columns
358
+ dataset = pd_df
359
+
360
+ model_trainer = ModelTrainerBuilder.build(
361
+ estimator=self._sklearn_object,
362
+ dataset=dataset,
363
+ input_cols=self.input_cols,
364
+ label_cols=self.label_cols,
365
+ sample_weight_col=self.sample_weight_col,
366
+ autogenerated=self._autogenerated,
367
+ subproject=_SUBPROJECT
368
+ )
369
+ self._sklearn_object = model_trainer.train()
339
370
  self._is_fitted = True
340
371
  self._get_model_signatures(dataset)
341
372
  return self
342
373
 
343
- def _fit_snowpark(self, dataset: DataFrame) -> None:
344
- session = dataset._session
345
- assert session is not None # keep mypy happy
346
- # Validate that key package version in user workspace are supported in snowflake conda channel
347
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
348
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
349
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
350
-
351
- # Specify input columns so column pruning will be enforced
352
- selected_cols = self._get_active_columns()
353
- if len(selected_cols) > 0:
354
- dataset = dataset.select(selected_cols)
355
-
356
- estimator = self._sklearn_object
357
- assert estimator is not None # Keep mypy happy
358
-
359
- self._snowpark_cols = dataset.select(self.input_cols).columns
360
-
361
- self._sklearn_object = self._handlers.fit_snowpark(
362
- dataset,
363
- session,
364
- estimator,
365
- ["snowflake-snowpark-python"] + self._get_dependencies(),
366
- self.input_cols,
367
- self.label_cols,
368
- self.sample_weight_col,
369
- )
370
-
371
374
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
372
375
  if self._drop_input_cols:
373
376
  return []
@@ -555,11 +558,6 @@ class IterativeImputer(BaseTransformer):
555
558
  subproject=_SUBPROJECT,
556
559
  custom_tags=dict([("autogen", True)]),
557
560
  )
558
- @telemetry.add_stmt_params_to_df(
559
- project=_PROJECT,
560
- subproject=_SUBPROJECT,
561
- custom_tags=dict([("autogen", True)]),
562
- )
563
561
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
564
562
  """Method not supported for this class.
565
563
 
@@ -611,11 +609,6 @@ class IterativeImputer(BaseTransformer):
611
609
  subproject=_SUBPROJECT,
612
610
  custom_tags=dict([("autogen", True)]),
613
611
  )
614
- @telemetry.add_stmt_params_to_df(
615
- project=_PROJECT,
616
- subproject=_SUBPROJECT,
617
- custom_tags=dict([("autogen", True)]),
618
- )
619
612
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
620
613
  """Impute all missing values in `X`
621
614
  For more details on this function, see [sklearn.impute.IterativeImputer.transform]
@@ -674,7 +667,8 @@ class IterativeImputer(BaseTransformer):
674
667
  if False:
675
668
  self.fit(dataset)
676
669
  assert self._sklearn_object is not None
677
- return self._sklearn_object.labels_
670
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
671
+ return labels
678
672
  else:
679
673
  raise NotImplementedError
680
674
 
@@ -710,6 +704,7 @@ class IterativeImputer(BaseTransformer):
710
704
  output_cols = []
711
705
 
712
706
  # Make sure column names are valid snowflake identifiers.
707
+ assert output_cols is not None # Make MyPy happy
713
708
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
714
709
 
715
710
  return rv
@@ -720,11 +715,6 @@ class IterativeImputer(BaseTransformer):
720
715
  subproject=_SUBPROJECT,
721
716
  custom_tags=dict([("autogen", True)]),
722
717
  )
723
- @telemetry.add_stmt_params_to_df(
724
- project=_PROJECT,
725
- subproject=_SUBPROJECT,
726
- custom_tags=dict([("autogen", True)]),
727
- )
728
718
  def predict_proba(
729
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
730
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -765,11 +755,6 @@ class IterativeImputer(BaseTransformer):
765
755
  subproject=_SUBPROJECT,
766
756
  custom_tags=dict([("autogen", True)]),
767
757
  )
768
- @telemetry.add_stmt_params_to_df(
769
- project=_PROJECT,
770
- subproject=_SUBPROJECT,
771
- custom_tags=dict([("autogen", True)]),
772
- )
773
758
  def predict_log_proba(
774
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
775
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -806,16 +791,6 @@ class IterativeImputer(BaseTransformer):
806
791
  return output_df
807
792
 
808
793
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
809
- @telemetry.send_api_usage_telemetry(
810
- project=_PROJECT,
811
- subproject=_SUBPROJECT,
812
- custom_tags=dict([("autogen", True)]),
813
- )
814
- @telemetry.add_stmt_params_to_df(
815
- project=_PROJECT,
816
- subproject=_SUBPROJECT,
817
- custom_tags=dict([("autogen", True)]),
818
- )
819
794
  def decision_function(
820
795
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
821
796
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -914,11 +889,6 @@ class IterativeImputer(BaseTransformer):
914
889
  subproject=_SUBPROJECT,
915
890
  custom_tags=dict([("autogen", True)]),
916
891
  )
917
- @telemetry.add_stmt_params_to_df(
918
- project=_PROJECT,
919
- subproject=_SUBPROJECT,
920
- custom_tags=dict([("autogen", True)]),
921
- )
922
892
  def kneighbors(
923
893
  self,
924
894
  dataset: Union[DataFrame, pd.DataFrame],
@@ -978,9 +948,9 @@ class IterativeImputer(BaseTransformer):
978
948
  # For classifier, the type of predict is the same as the type of label
979
949
  if self._sklearn_object._estimator_type == 'classifier':
980
950
  # label columns is the desired type for output
981
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
951
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
982
952
  # rename the output columns
983
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
953
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
984
954
  self._model_signature_dict["predict"] = ModelSignature(inputs,
985
955
  ([] if self._drop_input_cols else inputs)
986
956
  + outputs)