snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class IterativeImputer(BaseTransformer):
|
58
59
|
r"""Multivariate imputer that estimates each feature from all the others
|
59
60
|
For more details on this class, see [sklearn.impute.IterativeImputer]
|
@@ -61,6 +62,49 @@ class IterativeImputer(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
65
|
+
|
66
|
+
input_cols: Optional[Union[str, List[str]]]
|
67
|
+
A string or list of strings representing column names that contain features.
|
68
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
69
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
73
|
+
label_cols: Optional[Union[str, List[str]]]
|
74
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
64
108
|
estimator: estimator object, default=BayesianRidge()
|
65
109
|
The estimator to use at each step of the round-robin imputation.
|
66
110
|
If `sample_posterior=True`, the estimator must support
|
@@ -162,42 +206,6 @@ class IterativeImputer(BaseTransformer):
|
|
162
206
|
The imputed value is always `0` except when
|
163
207
|
`initial_strategy="constant"` in which case `fill_value` will be
|
164
208
|
used instead.
|
165
|
-
|
166
|
-
input_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that contain features.
|
168
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
169
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
170
|
-
parameters are considered input columns.
|
171
|
-
|
172
|
-
label_cols: Optional[Union[str, List[str]]]
|
173
|
-
A string or list of strings representing column names that contain labels.
|
174
|
-
This is a required param for estimators, as there is no way to infer these
|
175
|
-
columns. If this parameter is not specified, then object is fitted without
|
176
|
-
labels (like a transformer).
|
177
|
-
|
178
|
-
output_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that will store the
|
180
|
-
output of predict and transform operations. The length of output_cols must
|
181
|
-
match the expected number of output columns from the specific estimator or
|
182
|
-
transformer class used.
|
183
|
-
If this parameter is not specified, output column names are derived by
|
184
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
185
|
-
column names work for estimator's predict() method, but output_cols must
|
186
|
-
be set explicitly for transformers.
|
187
|
-
|
188
|
-
sample_weight_col: Optional[str]
|
189
|
-
A string representing the column name containing the sample weights.
|
190
|
-
This argument is only required when working with weighted datasets.
|
191
|
-
|
192
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
193
|
-
A string or a list of strings indicating column names to be excluded from any
|
194
|
-
operations (such as train, transform, or inference). These specified column(s)
|
195
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
196
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
197
|
-
columns, like index columns, during training or inference.
|
198
|
-
|
199
|
-
drop_input_cols: Optional[bool], default=False
|
200
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
201
209
|
"""
|
202
210
|
|
203
211
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -234,7 +242,7 @@ class IterativeImputer(BaseTransformer):
|
|
234
242
|
self.set_passthrough_cols(passthrough_cols)
|
235
243
|
self.set_drop_input_cols(drop_input_cols)
|
236
244
|
self.set_sample_weight_col(sample_weight_col)
|
237
|
-
deps = set(
|
245
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
238
246
|
deps = deps | gather_dependencies(estimator)
|
239
247
|
self._deps = list(deps)
|
240
248
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -258,13 +266,14 @@ class IterativeImputer(BaseTransformer):
|
|
258
266
|
args=init_args,
|
259
267
|
klass=sklearn.impute.IterativeImputer
|
260
268
|
)
|
261
|
-
self._sklearn_object = sklearn.impute.IterativeImputer(
|
269
|
+
self._sklearn_object: Any = sklearn.impute.IterativeImputer(
|
262
270
|
**cleaned_up_init_args,
|
263
271
|
)
|
264
272
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
265
273
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
266
274
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
267
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
275
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
276
|
+
self._autogenerated = True
|
268
277
|
|
269
278
|
def _get_rand_id(self) -> str:
|
270
279
|
"""
|
@@ -320,54 +329,48 @@ class IterativeImputer(BaseTransformer):
|
|
320
329
|
self
|
321
330
|
"""
|
322
331
|
self._infer_input_output_cols(dataset)
|
323
|
-
if isinstance(dataset,
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
self.
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
332
|
+
if isinstance(dataset, DataFrame):
|
333
|
+
session = dataset._session
|
334
|
+
assert session is not None # keep mypy happy
|
335
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
336
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
337
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
338
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
339
|
+
|
340
|
+
# Specify input columns so column pruning will be enforced
|
341
|
+
selected_cols = self._get_active_columns()
|
342
|
+
if len(selected_cols) > 0:
|
343
|
+
dataset = dataset.select(selected_cols)
|
344
|
+
|
345
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
346
|
+
|
347
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
348
|
+
if SNOWML_SPROC_ENV in os.environ:
|
349
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
350
|
+
project=_PROJECT,
|
351
|
+
subproject=_SUBPROJECT,
|
352
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
|
353
|
+
api_calls=[Session.call],
|
354
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
355
|
+
)
|
356
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
357
|
+
pd_df.columns = dataset.columns
|
358
|
+
dataset = pd_df
|
359
|
+
|
360
|
+
model_trainer = ModelTrainerBuilder.build(
|
361
|
+
estimator=self._sklearn_object,
|
362
|
+
dataset=dataset,
|
363
|
+
input_cols=self.input_cols,
|
364
|
+
label_cols=self.label_cols,
|
365
|
+
sample_weight_col=self.sample_weight_col,
|
366
|
+
autogenerated=self._autogenerated,
|
367
|
+
subproject=_SUBPROJECT
|
368
|
+
)
|
369
|
+
self._sklearn_object = model_trainer.train()
|
339
370
|
self._is_fitted = True
|
340
371
|
self._get_model_signatures(dataset)
|
341
372
|
return self
|
342
373
|
|
343
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
344
|
-
session = dataset._session
|
345
|
-
assert session is not None # keep mypy happy
|
346
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
347
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
348
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
349
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
350
|
-
|
351
|
-
# Specify input columns so column pruning will be enforced
|
352
|
-
selected_cols = self._get_active_columns()
|
353
|
-
if len(selected_cols) > 0:
|
354
|
-
dataset = dataset.select(selected_cols)
|
355
|
-
|
356
|
-
estimator = self._sklearn_object
|
357
|
-
assert estimator is not None # Keep mypy happy
|
358
|
-
|
359
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
360
|
-
|
361
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
362
|
-
dataset,
|
363
|
-
session,
|
364
|
-
estimator,
|
365
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
366
|
-
self.input_cols,
|
367
|
-
self.label_cols,
|
368
|
-
self.sample_weight_col,
|
369
|
-
)
|
370
|
-
|
371
374
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
372
375
|
if self._drop_input_cols:
|
373
376
|
return []
|
@@ -555,11 +558,6 @@ class IterativeImputer(BaseTransformer):
|
|
555
558
|
subproject=_SUBPROJECT,
|
556
559
|
custom_tags=dict([("autogen", True)]),
|
557
560
|
)
|
558
|
-
@telemetry.add_stmt_params_to_df(
|
559
|
-
project=_PROJECT,
|
560
|
-
subproject=_SUBPROJECT,
|
561
|
-
custom_tags=dict([("autogen", True)]),
|
562
|
-
)
|
563
561
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
564
562
|
"""Method not supported for this class.
|
565
563
|
|
@@ -611,11 +609,6 @@ class IterativeImputer(BaseTransformer):
|
|
611
609
|
subproject=_SUBPROJECT,
|
612
610
|
custom_tags=dict([("autogen", True)]),
|
613
611
|
)
|
614
|
-
@telemetry.add_stmt_params_to_df(
|
615
|
-
project=_PROJECT,
|
616
|
-
subproject=_SUBPROJECT,
|
617
|
-
custom_tags=dict([("autogen", True)]),
|
618
|
-
)
|
619
612
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
620
613
|
"""Impute all missing values in `X`
|
621
614
|
For more details on this function, see [sklearn.impute.IterativeImputer.transform]
|
@@ -674,7 +667,8 @@ class IterativeImputer(BaseTransformer):
|
|
674
667
|
if False:
|
675
668
|
self.fit(dataset)
|
676
669
|
assert self._sklearn_object is not None
|
677
|
-
|
670
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
671
|
+
return labels
|
678
672
|
else:
|
679
673
|
raise NotImplementedError
|
680
674
|
|
@@ -710,6 +704,7 @@ class IterativeImputer(BaseTransformer):
|
|
710
704
|
output_cols = []
|
711
705
|
|
712
706
|
# Make sure column names are valid snowflake identifiers.
|
707
|
+
assert output_cols is not None # Make MyPy happy
|
713
708
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
714
709
|
|
715
710
|
return rv
|
@@ -720,11 +715,6 @@ class IterativeImputer(BaseTransformer):
|
|
720
715
|
subproject=_SUBPROJECT,
|
721
716
|
custom_tags=dict([("autogen", True)]),
|
722
717
|
)
|
723
|
-
@telemetry.add_stmt_params_to_df(
|
724
|
-
project=_PROJECT,
|
725
|
-
subproject=_SUBPROJECT,
|
726
|
-
custom_tags=dict([("autogen", True)]),
|
727
|
-
)
|
728
718
|
def predict_proba(
|
729
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
730
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -765,11 +755,6 @@ class IterativeImputer(BaseTransformer):
|
|
765
755
|
subproject=_SUBPROJECT,
|
766
756
|
custom_tags=dict([("autogen", True)]),
|
767
757
|
)
|
768
|
-
@telemetry.add_stmt_params_to_df(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
758
|
def predict_log_proba(
|
774
759
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
775
760
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -806,16 +791,6 @@ class IterativeImputer(BaseTransformer):
|
|
806
791
|
return output_df
|
807
792
|
|
808
793
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
809
|
-
@telemetry.send_api_usage_telemetry(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
794
|
def decision_function(
|
820
795
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
821
796
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -914,11 +889,6 @@ class IterativeImputer(BaseTransformer):
|
|
914
889
|
subproject=_SUBPROJECT,
|
915
890
|
custom_tags=dict([("autogen", True)]),
|
916
891
|
)
|
917
|
-
@telemetry.add_stmt_params_to_df(
|
918
|
-
project=_PROJECT,
|
919
|
-
subproject=_SUBPROJECT,
|
920
|
-
custom_tags=dict([("autogen", True)]),
|
921
|
-
)
|
922
892
|
def kneighbors(
|
923
893
|
self,
|
924
894
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -978,9 +948,9 @@ class IterativeImputer(BaseTransformer):
|
|
978
948
|
# For classifier, the type of predict is the same as the type of label
|
979
949
|
if self._sklearn_object._estimator_type == 'classifier':
|
980
950
|
# label columns is the desired type for output
|
981
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
951
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
982
952
|
# rename the output columns
|
983
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
953
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
984
954
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
985
955
|
([] if self._drop_input_cols else inputs)
|
986
956
|
+ outputs)
|