snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ElasticNet(BaseTransformer):
|
57
58
|
r"""Linear regression with combined L1 and L2 priors as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.ElasticNet]
|
@@ -60,6 +61,51 @@ class ElasticNet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the penalty terms. Defaults to 1.0.
|
65
111
|
See the notes for the exact mathematical meaning of this
|
@@ -114,42 +160,6 @@ class ElasticNet(BaseTransformer):
|
|
114
160
|
rather than looping over features sequentially by default. This
|
115
161
|
(setting to 'random') often leads to significantly faster convergence
|
116
162
|
especially when tol is higher than 1e-4.
|
117
|
-
|
118
|
-
input_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that contain features.
|
120
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
121
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
122
|
-
parameters are considered input columns.
|
123
|
-
|
124
|
-
label_cols: Optional[Union[str, List[str]]]
|
125
|
-
A string or list of strings representing column names that contain labels.
|
126
|
-
This is a required param for estimators, as there is no way to infer these
|
127
|
-
columns. If this parameter is not specified, then object is fitted without
|
128
|
-
labels (like a transformer).
|
129
|
-
|
130
|
-
output_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that will store the
|
132
|
-
output of predict and transform operations. The length of output_cols must
|
133
|
-
match the expected number of output columns from the specific estimator or
|
134
|
-
transformer class used.
|
135
|
-
If this parameter is not specified, output column names are derived by
|
136
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
137
|
-
column names work for estimator's predict() method, but output_cols must
|
138
|
-
be set explicitly for transformers.
|
139
|
-
|
140
|
-
sample_weight_col: Optional[str]
|
141
|
-
A string representing the column name containing the sample weights.
|
142
|
-
This argument is only required when working with weighted datasets.
|
143
|
-
|
144
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or a list of strings indicating column names to be excluded from any
|
146
|
-
operations (such as train, transform, or inference). These specified column(s)
|
147
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
148
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
149
|
-
columns, like index columns, during training or inference.
|
150
|
-
|
151
|
-
drop_input_cols: Optional[bool], default=False
|
152
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
153
163
|
"""
|
154
164
|
|
155
165
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -181,7 +191,7 @@ class ElasticNet(BaseTransformer):
|
|
181
191
|
self.set_passthrough_cols(passthrough_cols)
|
182
192
|
self.set_drop_input_cols(drop_input_cols)
|
183
193
|
self.set_sample_weight_col(sample_weight_col)
|
184
|
-
deps = set(
|
194
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
185
195
|
|
186
196
|
self._deps = list(deps)
|
187
197
|
|
@@ -200,13 +210,14 @@ class ElasticNet(BaseTransformer):
|
|
200
210
|
args=init_args,
|
201
211
|
klass=sklearn.linear_model.ElasticNet
|
202
212
|
)
|
203
|
-
self._sklearn_object = sklearn.linear_model.ElasticNet(
|
213
|
+
self._sklearn_object: Any = sklearn.linear_model.ElasticNet(
|
204
214
|
**cleaned_up_init_args,
|
205
215
|
)
|
206
216
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
207
217
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
208
218
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
209
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
219
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
220
|
+
self._autogenerated = True
|
210
221
|
|
211
222
|
def _get_rand_id(self) -> str:
|
212
223
|
"""
|
@@ -262,54 +273,48 @@ class ElasticNet(BaseTransformer):
|
|
262
273
|
self
|
263
274
|
"""
|
264
275
|
self._infer_input_output_cols(dataset)
|
265
|
-
if isinstance(dataset,
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
self.
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
276
|
+
if isinstance(dataset, DataFrame):
|
277
|
+
session = dataset._session
|
278
|
+
assert session is not None # keep mypy happy
|
279
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
280
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
281
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
282
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
283
|
+
|
284
|
+
# Specify input columns so column pruning will be enforced
|
285
|
+
selected_cols = self._get_active_columns()
|
286
|
+
if len(selected_cols) > 0:
|
287
|
+
dataset = dataset.select(selected_cols)
|
288
|
+
|
289
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
290
|
+
|
291
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
292
|
+
if SNOWML_SPROC_ENV in os.environ:
|
293
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
294
|
+
project=_PROJECT,
|
295
|
+
subproject=_SUBPROJECT,
|
296
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
|
297
|
+
api_calls=[Session.call],
|
298
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
299
|
+
)
|
300
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
301
|
+
pd_df.columns = dataset.columns
|
302
|
+
dataset = pd_df
|
303
|
+
|
304
|
+
model_trainer = ModelTrainerBuilder.build(
|
305
|
+
estimator=self._sklearn_object,
|
306
|
+
dataset=dataset,
|
307
|
+
input_cols=self.input_cols,
|
308
|
+
label_cols=self.label_cols,
|
309
|
+
sample_weight_col=self.sample_weight_col,
|
310
|
+
autogenerated=self._autogenerated,
|
311
|
+
subproject=_SUBPROJECT
|
312
|
+
)
|
313
|
+
self._sklearn_object = model_trainer.train()
|
281
314
|
self._is_fitted = True
|
282
315
|
self._get_model_signatures(dataset)
|
283
316
|
return self
|
284
317
|
|
285
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
286
|
-
session = dataset._session
|
287
|
-
assert session is not None # keep mypy happy
|
288
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
289
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
290
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
291
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
292
|
-
|
293
|
-
# Specify input columns so column pruning will be enforced
|
294
|
-
selected_cols = self._get_active_columns()
|
295
|
-
if len(selected_cols) > 0:
|
296
|
-
dataset = dataset.select(selected_cols)
|
297
|
-
|
298
|
-
estimator = self._sklearn_object
|
299
|
-
assert estimator is not None # Keep mypy happy
|
300
|
-
|
301
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
302
|
-
|
303
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
304
|
-
dataset,
|
305
|
-
session,
|
306
|
-
estimator,
|
307
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
308
|
-
self.input_cols,
|
309
|
-
self.label_cols,
|
310
|
-
self.sample_weight_col,
|
311
|
-
)
|
312
|
-
|
313
318
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
314
319
|
if self._drop_input_cols:
|
315
320
|
return []
|
@@ -497,11 +502,6 @@ class ElasticNet(BaseTransformer):
|
|
497
502
|
subproject=_SUBPROJECT,
|
498
503
|
custom_tags=dict([("autogen", True)]),
|
499
504
|
)
|
500
|
-
@telemetry.add_stmt_params_to_df(
|
501
|
-
project=_PROJECT,
|
502
|
-
subproject=_SUBPROJECT,
|
503
|
-
custom_tags=dict([("autogen", True)]),
|
504
|
-
)
|
505
505
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
506
506
|
"""Predict using the linear model
|
507
507
|
For more details on this function, see [sklearn.linear_model.ElasticNet.predict]
|
@@ -555,11 +555,6 @@ class ElasticNet(BaseTransformer):
|
|
555
555
|
subproject=_SUBPROJECT,
|
556
556
|
custom_tags=dict([("autogen", True)]),
|
557
557
|
)
|
558
|
-
@telemetry.add_stmt_params_to_df(
|
559
|
-
project=_PROJECT,
|
560
|
-
subproject=_SUBPROJECT,
|
561
|
-
custom_tags=dict([("autogen", True)]),
|
562
|
-
)
|
563
558
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
564
559
|
"""Method not supported for this class.
|
565
560
|
|
@@ -616,7 +611,8 @@ class ElasticNet(BaseTransformer):
|
|
616
611
|
if False:
|
617
612
|
self.fit(dataset)
|
618
613
|
assert self._sklearn_object is not None
|
619
|
-
|
614
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
615
|
+
return labels
|
620
616
|
else:
|
621
617
|
raise NotImplementedError
|
622
618
|
|
@@ -652,6 +648,7 @@ class ElasticNet(BaseTransformer):
|
|
652
648
|
output_cols = []
|
653
649
|
|
654
650
|
# Make sure column names are valid snowflake identifiers.
|
651
|
+
assert output_cols is not None # Make MyPy happy
|
655
652
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
656
653
|
|
657
654
|
return rv
|
@@ -662,11 +659,6 @@ class ElasticNet(BaseTransformer):
|
|
662
659
|
subproject=_SUBPROJECT,
|
663
660
|
custom_tags=dict([("autogen", True)]),
|
664
661
|
)
|
665
|
-
@telemetry.add_stmt_params_to_df(
|
666
|
-
project=_PROJECT,
|
667
|
-
subproject=_SUBPROJECT,
|
668
|
-
custom_tags=dict([("autogen", True)]),
|
669
|
-
)
|
670
662
|
def predict_proba(
|
671
663
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
672
664
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -707,11 +699,6 @@ class ElasticNet(BaseTransformer):
|
|
707
699
|
subproject=_SUBPROJECT,
|
708
700
|
custom_tags=dict([("autogen", True)]),
|
709
701
|
)
|
710
|
-
@telemetry.add_stmt_params_to_df(
|
711
|
-
project=_PROJECT,
|
712
|
-
subproject=_SUBPROJECT,
|
713
|
-
custom_tags=dict([("autogen", True)]),
|
714
|
-
)
|
715
702
|
def predict_log_proba(
|
716
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
717
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -748,16 +735,6 @@ class ElasticNet(BaseTransformer):
|
|
748
735
|
return output_df
|
749
736
|
|
750
737
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
751
|
-
@telemetry.send_api_usage_telemetry(
|
752
|
-
project=_PROJECT,
|
753
|
-
subproject=_SUBPROJECT,
|
754
|
-
custom_tags=dict([("autogen", True)]),
|
755
|
-
)
|
756
|
-
@telemetry.add_stmt_params_to_df(
|
757
|
-
project=_PROJECT,
|
758
|
-
subproject=_SUBPROJECT,
|
759
|
-
custom_tags=dict([("autogen", True)]),
|
760
|
-
)
|
761
738
|
def decision_function(
|
762
739
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
763
740
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -858,11 +835,6 @@ class ElasticNet(BaseTransformer):
|
|
858
835
|
subproject=_SUBPROJECT,
|
859
836
|
custom_tags=dict([("autogen", True)]),
|
860
837
|
)
|
861
|
-
@telemetry.add_stmt_params_to_df(
|
862
|
-
project=_PROJECT,
|
863
|
-
subproject=_SUBPROJECT,
|
864
|
-
custom_tags=dict([("autogen", True)]),
|
865
|
-
)
|
866
838
|
def kneighbors(
|
867
839
|
self,
|
868
840
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -922,9 +894,9 @@ class ElasticNet(BaseTransformer):
|
|
922
894
|
# For classifier, the type of predict is the same as the type of label
|
923
895
|
if self._sklearn_object._estimator_type == 'classifier':
|
924
896
|
# label columns is the desired type for output
|
925
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
897
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
926
898
|
# rename the output columns
|
927
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
899
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
928
900
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
929
901
|
([] if self._drop_input_cols else inputs)
|
930
902
|
+ outputs)
|