snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ElasticNet(BaseTransformer):
57
58
  r"""Linear regression with combined L1 and L2 priors as regularizer
58
59
  For more details on this class, see [sklearn.linear_model.ElasticNet]
@@ -60,6 +61,51 @@ class ElasticNet(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float, default=1.0
64
110
  Constant that multiplies the penalty terms. Defaults to 1.0.
65
111
  See the notes for the exact mathematical meaning of this
@@ -114,42 +160,6 @@ class ElasticNet(BaseTransformer):
114
160
  rather than looping over features sequentially by default. This
115
161
  (setting to 'random') often leads to significantly faster convergence
116
162
  especially when tol is higher than 1e-4.
117
-
118
- input_cols: Optional[Union[str, List[str]]]
119
- A string or list of strings representing column names that contain features.
120
- If this parameter is not specified, all columns in the input DataFrame except
121
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
122
- parameters are considered input columns.
123
-
124
- label_cols: Optional[Union[str, List[str]]]
125
- A string or list of strings representing column names that contain labels.
126
- This is a required param for estimators, as there is no way to infer these
127
- columns. If this parameter is not specified, then object is fitted without
128
- labels (like a transformer).
129
-
130
- output_cols: Optional[Union[str, List[str]]]
131
- A string or list of strings representing column names that will store the
132
- output of predict and transform operations. The length of output_cols must
133
- match the expected number of output columns from the specific estimator or
134
- transformer class used.
135
- If this parameter is not specified, output column names are derived by
136
- adding an OUTPUT_ prefix to the label column names. These inferred output
137
- column names work for estimator's predict() method, but output_cols must
138
- be set explicitly for transformers.
139
-
140
- sample_weight_col: Optional[str]
141
- A string representing the column name containing the sample weights.
142
- This argument is only required when working with weighted datasets.
143
-
144
- passthrough_cols: Optional[Union[str, List[str]]]
145
- A string or a list of strings indicating column names to be excluded from any
146
- operations (such as train, transform, or inference). These specified column(s)
147
- will remain untouched throughout the process. This option is helpful in scenarios
148
- requiring automatic input_cols inference, but need to avoid using specific
149
- columns, like index columns, during training or inference.
150
-
151
- drop_input_cols: Optional[bool], default=False
152
- If set, the response of predict(), transform() methods will not contain input columns.
153
163
  """
154
164
 
155
165
  def __init__( # type: ignore[no-untyped-def]
@@ -181,7 +191,7 @@ class ElasticNet(BaseTransformer):
181
191
  self.set_passthrough_cols(passthrough_cols)
182
192
  self.set_drop_input_cols(drop_input_cols)
183
193
  self.set_sample_weight_col(sample_weight_col)
184
- deps = set(SklearnWrapperProvider().dependencies)
194
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
185
195
 
186
196
  self._deps = list(deps)
187
197
 
@@ -200,13 +210,14 @@ class ElasticNet(BaseTransformer):
200
210
  args=init_args,
201
211
  klass=sklearn.linear_model.ElasticNet
202
212
  )
203
- self._sklearn_object = sklearn.linear_model.ElasticNet(
213
+ self._sklearn_object: Any = sklearn.linear_model.ElasticNet(
204
214
  **cleaned_up_init_args,
205
215
  )
206
216
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
207
217
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
208
218
  self._snowpark_cols: Optional[List[str]] = self.input_cols
209
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
219
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
220
+ self._autogenerated = True
210
221
 
211
222
  def _get_rand_id(self) -> str:
212
223
  """
@@ -262,54 +273,48 @@ class ElasticNet(BaseTransformer):
262
273
  self
263
274
  """
264
275
  self._infer_input_output_cols(dataset)
265
- if isinstance(dataset, pd.DataFrame):
266
- assert self._sklearn_object is not None # keep mypy happy
267
- self._sklearn_object = self._handlers.fit_pandas(
268
- dataset,
269
- self._sklearn_object,
270
- self.input_cols,
271
- self.label_cols,
272
- self.sample_weight_col
273
- )
274
- elif isinstance(dataset, DataFrame):
275
- self._fit_snowpark(dataset)
276
- else:
277
- raise TypeError(
278
- f"Unexpected dataset type: {type(dataset)}."
279
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
280
- )
276
+ if isinstance(dataset, DataFrame):
277
+ session = dataset._session
278
+ assert session is not None # keep mypy happy
279
+ # Validate that key package version in user workspace are supported in snowflake conda channel
280
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
281
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
282
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
283
+
284
+ # Specify input columns so column pruning will be enforced
285
+ selected_cols = self._get_active_columns()
286
+ if len(selected_cols) > 0:
287
+ dataset = dataset.select(selected_cols)
288
+
289
+ self._snowpark_cols = dataset.select(self.input_cols).columns
290
+
291
+ # If we are already in a stored procedure, no need to kick off another one.
292
+ if SNOWML_SPROC_ENV in os.environ:
293
+ statement_params = telemetry.get_function_usage_statement_params(
294
+ project=_PROJECT,
295
+ subproject=_SUBPROJECT,
296
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
297
+ api_calls=[Session.call],
298
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
299
+ )
300
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
301
+ pd_df.columns = dataset.columns
302
+ dataset = pd_df
303
+
304
+ model_trainer = ModelTrainerBuilder.build(
305
+ estimator=self._sklearn_object,
306
+ dataset=dataset,
307
+ input_cols=self.input_cols,
308
+ label_cols=self.label_cols,
309
+ sample_weight_col=self.sample_weight_col,
310
+ autogenerated=self._autogenerated,
311
+ subproject=_SUBPROJECT
312
+ )
313
+ self._sklearn_object = model_trainer.train()
281
314
  self._is_fitted = True
282
315
  self._get_model_signatures(dataset)
283
316
  return self
284
317
 
285
- def _fit_snowpark(self, dataset: DataFrame) -> None:
286
- session = dataset._session
287
- assert session is not None # keep mypy happy
288
- # Validate that key package version in user workspace are supported in snowflake conda channel
289
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
290
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
291
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
292
-
293
- # Specify input columns so column pruning will be enforced
294
- selected_cols = self._get_active_columns()
295
- if len(selected_cols) > 0:
296
- dataset = dataset.select(selected_cols)
297
-
298
- estimator = self._sklearn_object
299
- assert estimator is not None # Keep mypy happy
300
-
301
- self._snowpark_cols = dataset.select(self.input_cols).columns
302
-
303
- self._sklearn_object = self._handlers.fit_snowpark(
304
- dataset,
305
- session,
306
- estimator,
307
- ["snowflake-snowpark-python"] + self._get_dependencies(),
308
- self.input_cols,
309
- self.label_cols,
310
- self.sample_weight_col,
311
- )
312
-
313
318
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
314
319
  if self._drop_input_cols:
315
320
  return []
@@ -497,11 +502,6 @@ class ElasticNet(BaseTransformer):
497
502
  subproject=_SUBPROJECT,
498
503
  custom_tags=dict([("autogen", True)]),
499
504
  )
500
- @telemetry.add_stmt_params_to_df(
501
- project=_PROJECT,
502
- subproject=_SUBPROJECT,
503
- custom_tags=dict([("autogen", True)]),
504
- )
505
505
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
506
506
  """Predict using the linear model
507
507
  For more details on this function, see [sklearn.linear_model.ElasticNet.predict]
@@ -555,11 +555,6 @@ class ElasticNet(BaseTransformer):
555
555
  subproject=_SUBPROJECT,
556
556
  custom_tags=dict([("autogen", True)]),
557
557
  )
558
- @telemetry.add_stmt_params_to_df(
559
- project=_PROJECT,
560
- subproject=_SUBPROJECT,
561
- custom_tags=dict([("autogen", True)]),
562
- )
563
558
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
564
559
  """Method not supported for this class.
565
560
 
@@ -616,7 +611,8 @@ class ElasticNet(BaseTransformer):
616
611
  if False:
617
612
  self.fit(dataset)
618
613
  assert self._sklearn_object is not None
619
- return self._sklearn_object.labels_
614
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
615
+ return labels
620
616
  else:
621
617
  raise NotImplementedError
622
618
 
@@ -652,6 +648,7 @@ class ElasticNet(BaseTransformer):
652
648
  output_cols = []
653
649
 
654
650
  # Make sure column names are valid snowflake identifiers.
651
+ assert output_cols is not None # Make MyPy happy
655
652
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
656
653
 
657
654
  return rv
@@ -662,11 +659,6 @@ class ElasticNet(BaseTransformer):
662
659
  subproject=_SUBPROJECT,
663
660
  custom_tags=dict([("autogen", True)]),
664
661
  )
665
- @telemetry.add_stmt_params_to_df(
666
- project=_PROJECT,
667
- subproject=_SUBPROJECT,
668
- custom_tags=dict([("autogen", True)]),
669
- )
670
662
  def predict_proba(
671
663
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
672
664
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -707,11 +699,6 @@ class ElasticNet(BaseTransformer):
707
699
  subproject=_SUBPROJECT,
708
700
  custom_tags=dict([("autogen", True)]),
709
701
  )
710
- @telemetry.add_stmt_params_to_df(
711
- project=_PROJECT,
712
- subproject=_SUBPROJECT,
713
- custom_tags=dict([("autogen", True)]),
714
- )
715
702
  def predict_log_proba(
716
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
717
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -748,16 +735,6 @@ class ElasticNet(BaseTransformer):
748
735
  return output_df
749
736
 
750
737
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
751
- @telemetry.send_api_usage_telemetry(
752
- project=_PROJECT,
753
- subproject=_SUBPROJECT,
754
- custom_tags=dict([("autogen", True)]),
755
- )
756
- @telemetry.add_stmt_params_to_df(
757
- project=_PROJECT,
758
- subproject=_SUBPROJECT,
759
- custom_tags=dict([("autogen", True)]),
760
- )
761
738
  def decision_function(
762
739
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
763
740
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -858,11 +835,6 @@ class ElasticNet(BaseTransformer):
858
835
  subproject=_SUBPROJECT,
859
836
  custom_tags=dict([("autogen", True)]),
860
837
  )
861
- @telemetry.add_stmt_params_to_df(
862
- project=_PROJECT,
863
- subproject=_SUBPROJECT,
864
- custom_tags=dict([("autogen", True)]),
865
- )
866
838
  def kneighbors(
867
839
  self,
868
840
  dataset: Union[DataFrame, pd.DataFrame],
@@ -922,9 +894,9 @@ class ElasticNet(BaseTransformer):
922
894
  # For classifier, the type of predict is the same as the type of label
923
895
  if self._sklearn_object._estimator_type == 'classifier':
924
896
  # label columns is the desired type for output
925
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
897
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
926
898
  # rename the output columns
927
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
899
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
928
900
  self._model_signature_dict["predict"] = ModelSignature(inputs,
929
901
  ([] if self._drop_input_cols else inputs)
930
902
  + outputs)