snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class CategoricalNB(BaseTransformer):
|
57
58
|
r"""Naive Bayes classifier for categorical features
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.CategoricalNB]
|
@@ -60,6 +61,51 @@ class CategoricalNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Additive (Laplace/Lidstone) smoothing parameter
|
65
111
|
(set alpha=0 and force_alpha=True, for no smoothing).
|
@@ -86,42 +132,6 @@ class CategoricalNB(BaseTransformer):
|
|
86
132
|
minimum number of categories for the ith column of the input.
|
87
133
|
- None (default): Determines the number of categories automatically
|
88
134
|
from the training data.
|
89
|
-
|
90
|
-
input_cols: Optional[Union[str, List[str]]]
|
91
|
-
A string or list of strings representing column names that contain features.
|
92
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
93
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
94
|
-
parameters are considered input columns.
|
95
|
-
|
96
|
-
label_cols: Optional[Union[str, List[str]]]
|
97
|
-
A string or list of strings representing column names that contain labels.
|
98
|
-
This is a required param for estimators, as there is no way to infer these
|
99
|
-
columns. If this parameter is not specified, then object is fitted without
|
100
|
-
labels (like a transformer).
|
101
|
-
|
102
|
-
output_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that will store the
|
104
|
-
output of predict and transform operations. The length of output_cols must
|
105
|
-
match the expected number of output columns from the specific estimator or
|
106
|
-
transformer class used.
|
107
|
-
If this parameter is not specified, output column names are derived by
|
108
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
109
|
-
column names work for estimator's predict() method, but output_cols must
|
110
|
-
be set explicitly for transformers.
|
111
|
-
|
112
|
-
sample_weight_col: Optional[str]
|
113
|
-
A string representing the column name containing the sample weights.
|
114
|
-
This argument is only required when working with weighted datasets.
|
115
|
-
|
116
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or a list of strings indicating column names to be excluded from any
|
118
|
-
operations (such as train, transform, or inference). These specified column(s)
|
119
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
120
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
121
|
-
columns, like index columns, during training or inference.
|
122
|
-
|
123
|
-
drop_input_cols: Optional[bool], default=False
|
124
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
125
135
|
"""
|
126
136
|
|
127
137
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -147,7 +157,7 @@ class CategoricalNB(BaseTransformer):
|
|
147
157
|
self.set_passthrough_cols(passthrough_cols)
|
148
158
|
self.set_drop_input_cols(drop_input_cols)
|
149
159
|
self.set_sample_weight_col(sample_weight_col)
|
150
|
-
deps = set(
|
160
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
151
161
|
|
152
162
|
self._deps = list(deps)
|
153
163
|
|
@@ -160,13 +170,14 @@ class CategoricalNB(BaseTransformer):
|
|
160
170
|
args=init_args,
|
161
171
|
klass=sklearn.naive_bayes.CategoricalNB
|
162
172
|
)
|
163
|
-
self._sklearn_object = sklearn.naive_bayes.CategoricalNB(
|
173
|
+
self._sklearn_object: Any = sklearn.naive_bayes.CategoricalNB(
|
164
174
|
**cleaned_up_init_args,
|
165
175
|
)
|
166
176
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
167
177
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
168
178
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
169
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=CategoricalNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
179
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=CategoricalNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
180
|
+
self._autogenerated = True
|
170
181
|
|
171
182
|
def _get_rand_id(self) -> str:
|
172
183
|
"""
|
@@ -222,54 +233,48 @@ class CategoricalNB(BaseTransformer):
|
|
222
233
|
self
|
223
234
|
"""
|
224
235
|
self._infer_input_output_cols(dataset)
|
225
|
-
if isinstance(dataset,
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
self.
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
236
|
+
if isinstance(dataset, DataFrame):
|
237
|
+
session = dataset._session
|
238
|
+
assert session is not None # keep mypy happy
|
239
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
+
|
244
|
+
# Specify input columns so column pruning will be enforced
|
245
|
+
selected_cols = self._get_active_columns()
|
246
|
+
if len(selected_cols) > 0:
|
247
|
+
dataset = dataset.select(selected_cols)
|
248
|
+
|
249
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
250
|
+
|
251
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
252
|
+
if SNOWML_SPROC_ENV in os.environ:
|
253
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
254
|
+
project=_PROJECT,
|
255
|
+
subproject=_SUBPROJECT,
|
256
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), CategoricalNB.__class__.__name__),
|
257
|
+
api_calls=[Session.call],
|
258
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
259
|
+
)
|
260
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
261
|
+
pd_df.columns = dataset.columns
|
262
|
+
dataset = pd_df
|
263
|
+
|
264
|
+
model_trainer = ModelTrainerBuilder.build(
|
265
|
+
estimator=self._sklearn_object,
|
266
|
+
dataset=dataset,
|
267
|
+
input_cols=self.input_cols,
|
268
|
+
label_cols=self.label_cols,
|
269
|
+
sample_weight_col=self.sample_weight_col,
|
270
|
+
autogenerated=self._autogenerated,
|
271
|
+
subproject=_SUBPROJECT
|
272
|
+
)
|
273
|
+
self._sklearn_object = model_trainer.train()
|
241
274
|
self._is_fitted = True
|
242
275
|
self._get_model_signatures(dataset)
|
243
276
|
return self
|
244
277
|
|
245
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
246
|
-
session = dataset._session
|
247
|
-
assert session is not None # keep mypy happy
|
248
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
-
|
253
|
-
# Specify input columns so column pruning will be enforced
|
254
|
-
selected_cols = self._get_active_columns()
|
255
|
-
if len(selected_cols) > 0:
|
256
|
-
dataset = dataset.select(selected_cols)
|
257
|
-
|
258
|
-
estimator = self._sklearn_object
|
259
|
-
assert estimator is not None # Keep mypy happy
|
260
|
-
|
261
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
-
|
263
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
264
|
-
dataset,
|
265
|
-
session,
|
266
|
-
estimator,
|
267
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
268
|
-
self.input_cols,
|
269
|
-
self.label_cols,
|
270
|
-
self.sample_weight_col,
|
271
|
-
)
|
272
|
-
|
273
278
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
274
279
|
if self._drop_input_cols:
|
275
280
|
return []
|
@@ -457,11 +462,6 @@ class CategoricalNB(BaseTransformer):
|
|
457
462
|
subproject=_SUBPROJECT,
|
458
463
|
custom_tags=dict([("autogen", True)]),
|
459
464
|
)
|
460
|
-
@telemetry.add_stmt_params_to_df(
|
461
|
-
project=_PROJECT,
|
462
|
-
subproject=_SUBPROJECT,
|
463
|
-
custom_tags=dict([("autogen", True)]),
|
464
|
-
)
|
465
465
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
466
466
|
"""Perform classification on an array of test vectors X
|
467
467
|
For more details on this function, see [sklearn.naive_bayes.CategoricalNB.predict]
|
@@ -515,11 +515,6 @@ class CategoricalNB(BaseTransformer):
|
|
515
515
|
subproject=_SUBPROJECT,
|
516
516
|
custom_tags=dict([("autogen", True)]),
|
517
517
|
)
|
518
|
-
@telemetry.add_stmt_params_to_df(
|
519
|
-
project=_PROJECT,
|
520
|
-
subproject=_SUBPROJECT,
|
521
|
-
custom_tags=dict([("autogen", True)]),
|
522
|
-
)
|
523
518
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
524
519
|
"""Method not supported for this class.
|
525
520
|
|
@@ -576,7 +571,8 @@ class CategoricalNB(BaseTransformer):
|
|
576
571
|
if False:
|
577
572
|
self.fit(dataset)
|
578
573
|
assert self._sklearn_object is not None
|
579
|
-
|
574
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
575
|
+
return labels
|
580
576
|
else:
|
581
577
|
raise NotImplementedError
|
582
578
|
|
@@ -612,6 +608,7 @@ class CategoricalNB(BaseTransformer):
|
|
612
608
|
output_cols = []
|
613
609
|
|
614
610
|
# Make sure column names are valid snowflake identifiers.
|
611
|
+
assert output_cols is not None # Make MyPy happy
|
615
612
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
616
613
|
|
617
614
|
return rv
|
@@ -622,11 +619,6 @@ class CategoricalNB(BaseTransformer):
|
|
622
619
|
subproject=_SUBPROJECT,
|
623
620
|
custom_tags=dict([("autogen", True)]),
|
624
621
|
)
|
625
|
-
@telemetry.add_stmt_params_to_df(
|
626
|
-
project=_PROJECT,
|
627
|
-
subproject=_SUBPROJECT,
|
628
|
-
custom_tags=dict([("autogen", True)]),
|
629
|
-
)
|
630
622
|
def predict_proba(
|
631
623
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
632
624
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -669,11 +661,6 @@ class CategoricalNB(BaseTransformer):
|
|
669
661
|
subproject=_SUBPROJECT,
|
670
662
|
custom_tags=dict([("autogen", True)]),
|
671
663
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
664
|
def predict_log_proba(
|
678
665
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
679
666
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -712,16 +699,6 @@ class CategoricalNB(BaseTransformer):
|
|
712
699
|
return output_df
|
713
700
|
|
714
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
715
|
-
@telemetry.send_api_usage_telemetry(
|
716
|
-
project=_PROJECT,
|
717
|
-
subproject=_SUBPROJECT,
|
718
|
-
custom_tags=dict([("autogen", True)]),
|
719
|
-
)
|
720
|
-
@telemetry.add_stmt_params_to_df(
|
721
|
-
project=_PROJECT,
|
722
|
-
subproject=_SUBPROJECT,
|
723
|
-
custom_tags=dict([("autogen", True)]),
|
724
|
-
)
|
725
702
|
def decision_function(
|
726
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
727
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -822,11 +799,6 @@ class CategoricalNB(BaseTransformer):
|
|
822
799
|
subproject=_SUBPROJECT,
|
823
800
|
custom_tags=dict([("autogen", True)]),
|
824
801
|
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
802
|
def kneighbors(
|
831
803
|
self,
|
832
804
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -886,9 +858,9 @@ class CategoricalNB(BaseTransformer):
|
|
886
858
|
# For classifier, the type of predict is the same as the type of label
|
887
859
|
if self._sklearn_object._estimator_type == 'classifier':
|
888
860
|
# label columns is the desired type for output
|
889
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
861
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
890
862
|
# rename the output columns
|
891
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
863
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
892
864
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
893
865
|
([] if self._drop_input_cols else inputs)
|
894
866
|
+ outputs)
|