snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class StackingRegressor(BaseTransformer):
|
57
58
|
r"""Stack of estimators with a final regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.StackingRegressor]
|
@@ -60,6 +61,51 @@ class StackingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimators: list of (str, estimator)
|
64
110
|
Base estimators which will be stacked together. Each element of the
|
65
111
|
list is defined as a tuple of string (i.e. name) and an estimator
|
@@ -109,42 +155,6 @@ class StackingRegressor(BaseTransformer):
|
|
109
155
|
|
110
156
|
verbose: int, default=0
|
111
157
|
Verbosity level.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
117
|
-
parameters are considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or a list of strings indicating column names to be excluded from any
|
141
|
-
operations (such as train, transform, or inference). These specified column(s)
|
142
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
143
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
144
|
-
columns, like index columns, during training or inference.
|
145
|
-
|
146
|
-
drop_input_cols: Optional[bool], default=False
|
147
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
148
158
|
"""
|
149
159
|
|
150
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -171,7 +181,7 @@ class StackingRegressor(BaseTransformer):
|
|
171
181
|
self.set_passthrough_cols(passthrough_cols)
|
172
182
|
self.set_drop_input_cols(drop_input_cols)
|
173
183
|
self.set_sample_weight_col(sample_weight_col)
|
174
|
-
deps = set(
|
184
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
175
185
|
deps = deps | gather_dependencies(estimators)
|
176
186
|
deps = deps | gather_dependencies(final_estimator)
|
177
187
|
self._deps = list(deps)
|
@@ -187,13 +197,14 @@ class StackingRegressor(BaseTransformer):
|
|
187
197
|
args=init_args,
|
188
198
|
klass=sklearn.ensemble.StackingRegressor
|
189
199
|
)
|
190
|
-
self._sklearn_object = sklearn.ensemble.StackingRegressor(
|
200
|
+
self._sklearn_object: Any = sklearn.ensemble.StackingRegressor(
|
191
201
|
**cleaned_up_init_args,
|
192
202
|
)
|
193
203
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
194
204
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
195
205
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
196
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
206
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
207
|
+
self._autogenerated = True
|
197
208
|
|
198
209
|
def _get_rand_id(self) -> str:
|
199
210
|
"""
|
@@ -249,54 +260,48 @@ class StackingRegressor(BaseTransformer):
|
|
249
260
|
self
|
250
261
|
"""
|
251
262
|
self._infer_input_output_cols(dataset)
|
252
|
-
if isinstance(dataset,
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
self.
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
263
|
+
if isinstance(dataset, DataFrame):
|
264
|
+
session = dataset._session
|
265
|
+
assert session is not None # keep mypy happy
|
266
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
267
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
268
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
269
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
270
|
+
|
271
|
+
# Specify input columns so column pruning will be enforced
|
272
|
+
selected_cols = self._get_active_columns()
|
273
|
+
if len(selected_cols) > 0:
|
274
|
+
dataset = dataset.select(selected_cols)
|
275
|
+
|
276
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
277
|
+
|
278
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
279
|
+
if SNOWML_SPROC_ENV in os.environ:
|
280
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
281
|
+
project=_PROJECT,
|
282
|
+
subproject=_SUBPROJECT,
|
283
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), StackingRegressor.__class__.__name__),
|
284
|
+
api_calls=[Session.call],
|
285
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
286
|
+
)
|
287
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
288
|
+
pd_df.columns = dataset.columns
|
289
|
+
dataset = pd_df
|
290
|
+
|
291
|
+
model_trainer = ModelTrainerBuilder.build(
|
292
|
+
estimator=self._sklearn_object,
|
293
|
+
dataset=dataset,
|
294
|
+
input_cols=self.input_cols,
|
295
|
+
label_cols=self.label_cols,
|
296
|
+
sample_weight_col=self.sample_weight_col,
|
297
|
+
autogenerated=self._autogenerated,
|
298
|
+
subproject=_SUBPROJECT
|
299
|
+
)
|
300
|
+
self._sklearn_object = model_trainer.train()
|
268
301
|
self._is_fitted = True
|
269
302
|
self._get_model_signatures(dataset)
|
270
303
|
return self
|
271
304
|
|
272
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
273
|
-
session = dataset._session
|
274
|
-
assert session is not None # keep mypy happy
|
275
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
276
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
277
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
278
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
279
|
-
|
280
|
-
# Specify input columns so column pruning will be enforced
|
281
|
-
selected_cols = self._get_active_columns()
|
282
|
-
if len(selected_cols) > 0:
|
283
|
-
dataset = dataset.select(selected_cols)
|
284
|
-
|
285
|
-
estimator = self._sklearn_object
|
286
|
-
assert estimator is not None # Keep mypy happy
|
287
|
-
|
288
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
289
|
-
|
290
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
291
|
-
dataset,
|
292
|
-
session,
|
293
|
-
estimator,
|
294
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
295
|
-
self.input_cols,
|
296
|
-
self.label_cols,
|
297
|
-
self.sample_weight_col,
|
298
|
-
)
|
299
|
-
|
300
305
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
301
306
|
if self._drop_input_cols:
|
302
307
|
return []
|
@@ -484,11 +489,6 @@ class StackingRegressor(BaseTransformer):
|
|
484
489
|
subproject=_SUBPROJECT,
|
485
490
|
custom_tags=dict([("autogen", True)]),
|
486
491
|
)
|
487
|
-
@telemetry.add_stmt_params_to_df(
|
488
|
-
project=_PROJECT,
|
489
|
-
subproject=_SUBPROJECT,
|
490
|
-
custom_tags=dict([("autogen", True)]),
|
491
|
-
)
|
492
492
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
493
493
|
"""Predict target for X
|
494
494
|
For more details on this function, see [sklearn.ensemble.StackingRegressor.predict]
|
@@ -542,11 +542,6 @@ class StackingRegressor(BaseTransformer):
|
|
542
542
|
subproject=_SUBPROJECT,
|
543
543
|
custom_tags=dict([("autogen", True)]),
|
544
544
|
)
|
545
|
-
@telemetry.add_stmt_params_to_df(
|
546
|
-
project=_PROJECT,
|
547
|
-
subproject=_SUBPROJECT,
|
548
|
-
custom_tags=dict([("autogen", True)]),
|
549
|
-
)
|
550
545
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
551
546
|
"""Return the predictions for X for each estimator
|
552
547
|
For more details on this function, see [sklearn.ensemble.StackingRegressor.transform]
|
@@ -605,7 +600,8 @@ class StackingRegressor(BaseTransformer):
|
|
605
600
|
if False:
|
606
601
|
self.fit(dataset)
|
607
602
|
assert self._sklearn_object is not None
|
608
|
-
|
603
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
604
|
+
return labels
|
609
605
|
else:
|
610
606
|
raise NotImplementedError
|
611
607
|
|
@@ -641,6 +637,7 @@ class StackingRegressor(BaseTransformer):
|
|
641
637
|
output_cols = []
|
642
638
|
|
643
639
|
# Make sure column names are valid snowflake identifiers.
|
640
|
+
assert output_cols is not None # Make MyPy happy
|
644
641
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
645
642
|
|
646
643
|
return rv
|
@@ -651,11 +648,6 @@ class StackingRegressor(BaseTransformer):
|
|
651
648
|
subproject=_SUBPROJECT,
|
652
649
|
custom_tags=dict([("autogen", True)]),
|
653
650
|
)
|
654
|
-
@telemetry.add_stmt_params_to_df(
|
655
|
-
project=_PROJECT,
|
656
|
-
subproject=_SUBPROJECT,
|
657
|
-
custom_tags=dict([("autogen", True)]),
|
658
|
-
)
|
659
651
|
def predict_proba(
|
660
652
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
661
653
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -696,11 +688,6 @@ class StackingRegressor(BaseTransformer):
|
|
696
688
|
subproject=_SUBPROJECT,
|
697
689
|
custom_tags=dict([("autogen", True)]),
|
698
690
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
691
|
def predict_log_proba(
|
705
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
706
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -737,16 +724,6 @@ class StackingRegressor(BaseTransformer):
|
|
737
724
|
return output_df
|
738
725
|
|
739
726
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
740
|
-
@telemetry.send_api_usage_telemetry(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
|
-
@telemetry.add_stmt_params_to_df(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
727
|
def decision_function(
|
751
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
752
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -847,11 +824,6 @@ class StackingRegressor(BaseTransformer):
|
|
847
824
|
subproject=_SUBPROJECT,
|
848
825
|
custom_tags=dict([("autogen", True)]),
|
849
826
|
)
|
850
|
-
@telemetry.add_stmt_params_to_df(
|
851
|
-
project=_PROJECT,
|
852
|
-
subproject=_SUBPROJECT,
|
853
|
-
custom_tags=dict([("autogen", True)]),
|
854
|
-
)
|
855
827
|
def kneighbors(
|
856
828
|
self,
|
857
829
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -911,9 +883,9 @@ class StackingRegressor(BaseTransformer):
|
|
911
883
|
# For classifier, the type of predict is the same as the type of label
|
912
884
|
if self._sklearn_object._estimator_type == 'classifier':
|
913
885
|
# label columns is the desired type for output
|
914
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
886
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
915
887
|
# rename the output columns
|
916
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
888
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
917
889
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
918
890
|
([] if self._drop_input_cols else inputs)
|
919
891
|
+ outputs)
|