snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Birch(BaseTransformer):
|
57
58
|
r"""Implements the BIRCH clustering algorithm
|
58
59
|
For more details on this class, see [sklearn.cluster.Birch]
|
@@ -60,6 +61,49 @@ class Birch(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
threshold: float, default=0.5
|
64
108
|
The radius of the subcluster obtained by merging a new sample and the
|
65
109
|
closest subcluster should be lesser than the threshold. Otherwise a new
|
@@ -93,42 +137,6 @@ class Birch(BaseTransformer):
|
|
93
137
|
copy: bool, default=True
|
94
138
|
Whether or not to make a copy of the given data. If set to False,
|
95
139
|
the initial data will be overwritten.
|
96
|
-
|
97
|
-
input_cols: Optional[Union[str, List[str]]]
|
98
|
-
A string or list of strings representing column names that contain features.
|
99
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
100
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
101
|
-
parameters are considered input columns.
|
102
|
-
|
103
|
-
label_cols: Optional[Union[str, List[str]]]
|
104
|
-
A string or list of strings representing column names that contain labels.
|
105
|
-
This is a required param for estimators, as there is no way to infer these
|
106
|
-
columns. If this parameter is not specified, then object is fitted without
|
107
|
-
labels (like a transformer).
|
108
|
-
|
109
|
-
output_cols: Optional[Union[str, List[str]]]
|
110
|
-
A string or list of strings representing column names that will store the
|
111
|
-
output of predict and transform operations. The length of output_cols must
|
112
|
-
match the expected number of output columns from the specific estimator or
|
113
|
-
transformer class used.
|
114
|
-
If this parameter is not specified, output column names are derived by
|
115
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
116
|
-
column names work for estimator's predict() method, but output_cols must
|
117
|
-
be set explicitly for transformers.
|
118
|
-
|
119
|
-
sample_weight_col: Optional[str]
|
120
|
-
A string representing the column name containing the sample weights.
|
121
|
-
This argument is only required when working with weighted datasets.
|
122
|
-
|
123
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or a list of strings indicating column names to be excluded from any
|
125
|
-
operations (such as train, transform, or inference). These specified column(s)
|
126
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
127
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
128
|
-
columns, like index columns, during training or inference.
|
129
|
-
|
130
|
-
drop_input_cols: Optional[bool], default=False
|
131
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
132
140
|
"""
|
133
141
|
|
134
142
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -154,7 +162,7 @@ class Birch(BaseTransformer):
|
|
154
162
|
self.set_passthrough_cols(passthrough_cols)
|
155
163
|
self.set_drop_input_cols(drop_input_cols)
|
156
164
|
self.set_sample_weight_col(sample_weight_col)
|
157
|
-
deps = set(
|
165
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
158
166
|
|
159
167
|
self._deps = list(deps)
|
160
168
|
|
@@ -167,13 +175,14 @@ class Birch(BaseTransformer):
|
|
167
175
|
args=init_args,
|
168
176
|
klass=sklearn.cluster.Birch
|
169
177
|
)
|
170
|
-
self._sklearn_object = sklearn.cluster.Birch(
|
178
|
+
self._sklearn_object: Any = sklearn.cluster.Birch(
|
171
179
|
**cleaned_up_init_args,
|
172
180
|
)
|
173
181
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
174
182
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
175
183
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
176
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Birch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
184
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Birch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
185
|
+
self._autogenerated = True
|
177
186
|
|
178
187
|
def _get_rand_id(self) -> str:
|
179
188
|
"""
|
@@ -229,54 +238,48 @@ class Birch(BaseTransformer):
|
|
229
238
|
self
|
230
239
|
"""
|
231
240
|
self._infer_input_output_cols(dataset)
|
232
|
-
if isinstance(dataset,
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
self.
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
241
|
+
if isinstance(dataset, DataFrame):
|
242
|
+
session = dataset._session
|
243
|
+
assert session is not None # keep mypy happy
|
244
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
245
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
246
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
247
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
248
|
+
|
249
|
+
# Specify input columns so column pruning will be enforced
|
250
|
+
selected_cols = self._get_active_columns()
|
251
|
+
if len(selected_cols) > 0:
|
252
|
+
dataset = dataset.select(selected_cols)
|
253
|
+
|
254
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
255
|
+
|
256
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
257
|
+
if SNOWML_SPROC_ENV in os.environ:
|
258
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
259
|
+
project=_PROJECT,
|
260
|
+
subproject=_SUBPROJECT,
|
261
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Birch.__class__.__name__),
|
262
|
+
api_calls=[Session.call],
|
263
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
264
|
+
)
|
265
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
266
|
+
pd_df.columns = dataset.columns
|
267
|
+
dataset = pd_df
|
268
|
+
|
269
|
+
model_trainer = ModelTrainerBuilder.build(
|
270
|
+
estimator=self._sklearn_object,
|
271
|
+
dataset=dataset,
|
272
|
+
input_cols=self.input_cols,
|
273
|
+
label_cols=self.label_cols,
|
274
|
+
sample_weight_col=self.sample_weight_col,
|
275
|
+
autogenerated=self._autogenerated,
|
276
|
+
subproject=_SUBPROJECT
|
277
|
+
)
|
278
|
+
self._sklearn_object = model_trainer.train()
|
248
279
|
self._is_fitted = True
|
249
280
|
self._get_model_signatures(dataset)
|
250
281
|
return self
|
251
282
|
|
252
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
253
|
-
session = dataset._session
|
254
|
-
assert session is not None # keep mypy happy
|
255
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
-
|
260
|
-
# Specify input columns so column pruning will be enforced
|
261
|
-
selected_cols = self._get_active_columns()
|
262
|
-
if len(selected_cols) > 0:
|
263
|
-
dataset = dataset.select(selected_cols)
|
264
|
-
|
265
|
-
estimator = self._sklearn_object
|
266
|
-
assert estimator is not None # Keep mypy happy
|
267
|
-
|
268
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
269
|
-
|
270
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
271
|
-
dataset,
|
272
|
-
session,
|
273
|
-
estimator,
|
274
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
275
|
-
self.input_cols,
|
276
|
-
self.label_cols,
|
277
|
-
self.sample_weight_col,
|
278
|
-
)
|
279
|
-
|
280
283
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
281
284
|
if self._drop_input_cols:
|
282
285
|
return []
|
@@ -464,11 +467,6 @@ class Birch(BaseTransformer):
|
|
464
467
|
subproject=_SUBPROJECT,
|
465
468
|
custom_tags=dict([("autogen", True)]),
|
466
469
|
)
|
467
|
-
@telemetry.add_stmt_params_to_df(
|
468
|
-
project=_PROJECT,
|
469
|
-
subproject=_SUBPROJECT,
|
470
|
-
custom_tags=dict([("autogen", True)]),
|
471
|
-
)
|
472
470
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
473
471
|
"""Predict data using the ``centroids_`` of subclusters
|
474
472
|
For more details on this function, see [sklearn.cluster.Birch.predict]
|
@@ -522,11 +520,6 @@ class Birch(BaseTransformer):
|
|
522
520
|
subproject=_SUBPROJECT,
|
523
521
|
custom_tags=dict([("autogen", True)]),
|
524
522
|
)
|
525
|
-
@telemetry.add_stmt_params_to_df(
|
526
|
-
project=_PROJECT,
|
527
|
-
subproject=_SUBPROJECT,
|
528
|
-
custom_tags=dict([("autogen", True)]),
|
529
|
-
)
|
530
523
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
531
524
|
"""Transform X into subcluster centroids dimension
|
532
525
|
For more details on this function, see [sklearn.cluster.Birch.transform]
|
@@ -587,7 +580,8 @@ class Birch(BaseTransformer):
|
|
587
580
|
if True:
|
588
581
|
self.fit(dataset)
|
589
582
|
assert self._sklearn_object is not None
|
590
|
-
|
583
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
584
|
+
return labels
|
591
585
|
else:
|
592
586
|
raise NotImplementedError
|
593
587
|
|
@@ -623,6 +617,7 @@ class Birch(BaseTransformer):
|
|
623
617
|
output_cols = []
|
624
618
|
|
625
619
|
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
626
621
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
627
622
|
|
628
623
|
return rv
|
@@ -633,11 +628,6 @@ class Birch(BaseTransformer):
|
|
633
628
|
subproject=_SUBPROJECT,
|
634
629
|
custom_tags=dict([("autogen", True)]),
|
635
630
|
)
|
636
|
-
@telemetry.add_stmt_params_to_df(
|
637
|
-
project=_PROJECT,
|
638
|
-
subproject=_SUBPROJECT,
|
639
|
-
custom_tags=dict([("autogen", True)]),
|
640
|
-
)
|
641
631
|
def predict_proba(
|
642
632
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
643
633
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -678,11 +668,6 @@ class Birch(BaseTransformer):
|
|
678
668
|
subproject=_SUBPROJECT,
|
679
669
|
custom_tags=dict([("autogen", True)]),
|
680
670
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
671
|
def predict_log_proba(
|
687
672
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
688
673
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -719,16 +704,6 @@ class Birch(BaseTransformer):
|
|
719
704
|
return output_df
|
720
705
|
|
721
706
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
722
|
-
@telemetry.send_api_usage_telemetry(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
|
-
@telemetry.add_stmt_params_to_df(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
707
|
def decision_function(
|
733
708
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
734
709
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -827,11 +802,6 @@ class Birch(BaseTransformer):
|
|
827
802
|
subproject=_SUBPROJECT,
|
828
803
|
custom_tags=dict([("autogen", True)]),
|
829
804
|
)
|
830
|
-
@telemetry.add_stmt_params_to_df(
|
831
|
-
project=_PROJECT,
|
832
|
-
subproject=_SUBPROJECT,
|
833
|
-
custom_tags=dict([("autogen", True)]),
|
834
|
-
)
|
835
805
|
def kneighbors(
|
836
806
|
self,
|
837
807
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -891,9 +861,9 @@ class Birch(BaseTransformer):
|
|
891
861
|
# For classifier, the type of predict is the same as the type of label
|
892
862
|
if self._sklearn_object._estimator_type == 'classifier':
|
893
863
|
# label columns is the desired type for output
|
894
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
864
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
895
865
|
# rename the output columns
|
896
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
866
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
897
867
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
898
868
|
([] if self._drop_input_cols else inputs)
|
899
869
|
+ outputs)
|