snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LocalOutlierFactor(BaseTransformer):
|
57
58
|
r"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF)
|
58
59
|
For more details on this class, see [sklearn.neighbors.LocalOutlierFactor]
|
@@ -60,6 +61,49 @@ class LocalOutlierFactor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_neighbors: int, default=20
|
64
108
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
109
|
If n_neighbors is larger than the number of samples provided,
|
@@ -132,42 +176,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
132
176
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
133
177
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
134
178
|
for more details.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
140
|
-
parameters are considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or a list of strings indicating column names to be excluded from any
|
164
|
-
operations (such as train, transform, or inference). These specified column(s)
|
165
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
166
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
167
|
-
columns, like index columns, during training or inference.
|
168
|
-
|
169
|
-
drop_input_cols: Optional[bool], default=False
|
170
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
171
179
|
"""
|
172
180
|
|
173
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -197,7 +205,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
197
205
|
self.set_passthrough_cols(passthrough_cols)
|
198
206
|
self.set_drop_input_cols(drop_input_cols)
|
199
207
|
self.set_sample_weight_col(sample_weight_col)
|
200
|
-
deps = set(
|
208
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
201
209
|
|
202
210
|
self._deps = list(deps)
|
203
211
|
|
@@ -214,13 +222,14 @@ class LocalOutlierFactor(BaseTransformer):
|
|
214
222
|
args=init_args,
|
215
223
|
klass=sklearn.neighbors.LocalOutlierFactor
|
216
224
|
)
|
217
|
-
self._sklearn_object = sklearn.neighbors.LocalOutlierFactor(
|
225
|
+
self._sklearn_object: Any = sklearn.neighbors.LocalOutlierFactor(
|
218
226
|
**cleaned_up_init_args,
|
219
227
|
)
|
220
228
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
221
229
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
222
230
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
223
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
231
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
232
|
+
self._autogenerated = True
|
224
233
|
|
225
234
|
def _get_rand_id(self) -> str:
|
226
235
|
"""
|
@@ -276,54 +285,48 @@ class LocalOutlierFactor(BaseTransformer):
|
|
276
285
|
self
|
277
286
|
"""
|
278
287
|
self._infer_input_output_cols(dataset)
|
279
|
-
if isinstance(dataset,
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
self.
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
288
|
+
if isinstance(dataset, DataFrame):
|
289
|
+
session = dataset._session
|
290
|
+
assert session is not None # keep mypy happy
|
291
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
292
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
293
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
294
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
295
|
+
|
296
|
+
# Specify input columns so column pruning will be enforced
|
297
|
+
selected_cols = self._get_active_columns()
|
298
|
+
if len(selected_cols) > 0:
|
299
|
+
dataset = dataset.select(selected_cols)
|
300
|
+
|
301
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
302
|
+
|
303
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
304
|
+
if SNOWML_SPROC_ENV in os.environ:
|
305
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
306
|
+
project=_PROJECT,
|
307
|
+
subproject=_SUBPROJECT,
|
308
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LocalOutlierFactor.__class__.__name__),
|
309
|
+
api_calls=[Session.call],
|
310
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
311
|
+
)
|
312
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
313
|
+
pd_df.columns = dataset.columns
|
314
|
+
dataset = pd_df
|
315
|
+
|
316
|
+
model_trainer = ModelTrainerBuilder.build(
|
317
|
+
estimator=self._sklearn_object,
|
318
|
+
dataset=dataset,
|
319
|
+
input_cols=self.input_cols,
|
320
|
+
label_cols=self.label_cols,
|
321
|
+
sample_weight_col=self.sample_weight_col,
|
322
|
+
autogenerated=self._autogenerated,
|
323
|
+
subproject=_SUBPROJECT
|
324
|
+
)
|
325
|
+
self._sklearn_object = model_trainer.train()
|
295
326
|
self._is_fitted = True
|
296
327
|
self._get_model_signatures(dataset)
|
297
328
|
return self
|
298
329
|
|
299
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
300
|
-
session = dataset._session
|
301
|
-
assert session is not None # keep mypy happy
|
302
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
303
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
304
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
305
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
306
|
-
|
307
|
-
# Specify input columns so column pruning will be enforced
|
308
|
-
selected_cols = self._get_active_columns()
|
309
|
-
if len(selected_cols) > 0:
|
310
|
-
dataset = dataset.select(selected_cols)
|
311
|
-
|
312
|
-
estimator = self._sklearn_object
|
313
|
-
assert estimator is not None # Keep mypy happy
|
314
|
-
|
315
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
316
|
-
|
317
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
318
|
-
dataset,
|
319
|
-
session,
|
320
|
-
estimator,
|
321
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
322
|
-
self.input_cols,
|
323
|
-
self.label_cols,
|
324
|
-
self.sample_weight_col,
|
325
|
-
)
|
326
|
-
|
327
330
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
328
331
|
if self._drop_input_cols:
|
329
332
|
return []
|
@@ -511,11 +514,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
511
514
|
subproject=_SUBPROJECT,
|
512
515
|
custom_tags=dict([("autogen", True)]),
|
513
516
|
)
|
514
|
-
@telemetry.add_stmt_params_to_df(
|
515
|
-
project=_PROJECT,
|
516
|
-
subproject=_SUBPROJECT,
|
517
|
-
custom_tags=dict([("autogen", True)]),
|
518
|
-
)
|
519
517
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
520
518
|
"""Predict the labels (1 inlier, -1 outlier) of X according to LOF
|
521
519
|
For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.predict]
|
@@ -569,11 +567,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
569
567
|
subproject=_SUBPROJECT,
|
570
568
|
custom_tags=dict([("autogen", True)]),
|
571
569
|
)
|
572
|
-
@telemetry.add_stmt_params_to_df(
|
573
|
-
project=_PROJECT,
|
574
|
-
subproject=_SUBPROJECT,
|
575
|
-
custom_tags=dict([("autogen", True)]),
|
576
|
-
)
|
577
570
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
578
571
|
"""Method not supported for this class.
|
579
572
|
|
@@ -632,7 +625,8 @@ class LocalOutlierFactor(BaseTransformer):
|
|
632
625
|
if False:
|
633
626
|
self.fit(dataset)
|
634
627
|
assert self._sklearn_object is not None
|
635
|
-
|
628
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
629
|
+
return labels
|
636
630
|
else:
|
637
631
|
raise NotImplementedError
|
638
632
|
|
@@ -668,6 +662,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
668
662
|
output_cols = []
|
669
663
|
|
670
664
|
# Make sure column names are valid snowflake identifiers.
|
665
|
+
assert output_cols is not None # Make MyPy happy
|
671
666
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
672
667
|
|
673
668
|
return rv
|
@@ -678,11 +673,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
678
673
|
subproject=_SUBPROJECT,
|
679
674
|
custom_tags=dict([("autogen", True)]),
|
680
675
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
676
|
def predict_proba(
|
687
677
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
688
678
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -723,11 +713,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
723
713
|
subproject=_SUBPROJECT,
|
724
714
|
custom_tags=dict([("autogen", True)]),
|
725
715
|
)
|
726
|
-
@telemetry.add_stmt_params_to_df(
|
727
|
-
project=_PROJECT,
|
728
|
-
subproject=_SUBPROJECT,
|
729
|
-
custom_tags=dict([("autogen", True)]),
|
730
|
-
)
|
731
716
|
def predict_log_proba(
|
732
717
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
733
718
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -764,16 +749,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
764
749
|
return output_df
|
765
750
|
|
766
751
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
767
|
-
@telemetry.send_api_usage_telemetry(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
|
-
@telemetry.add_stmt_params_to_df(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
752
|
def decision_function(
|
778
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
779
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -874,11 +849,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
874
849
|
subproject=_SUBPROJECT,
|
875
850
|
custom_tags=dict([("autogen", True)]),
|
876
851
|
)
|
877
|
-
@telemetry.add_stmt_params_to_df(
|
878
|
-
project=_PROJECT,
|
879
|
-
subproject=_SUBPROJECT,
|
880
|
-
custom_tags=dict([("autogen", True)]),
|
881
|
-
)
|
882
852
|
def kneighbors(
|
883
853
|
self,
|
884
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -940,9 +910,9 @@ class LocalOutlierFactor(BaseTransformer):
|
|
940
910
|
# For classifier, the type of predict is the same as the type of label
|
941
911
|
if self._sklearn_object._estimator_type == 'classifier':
|
942
912
|
# label columns is the desired type for output
|
943
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
913
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
944
914
|
# rename the output columns
|
945
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
915
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
946
916
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
947
917
|
([] if self._drop_input_cols else inputs)
|
948
918
|
+ outputs)
|