snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelPCA(BaseTransformer):
|
57
58
|
r"""Kernel Principal component analysis (KPCA) [1]_
|
58
59
|
For more details on this class, see [sklearn.decomposition.KernelPCA]
|
@@ -60,6 +61,49 @@ class KernelPCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of components. If None, all non-zero components are kept.
|
65
109
|
|
@@ -155,42 +199,6 @@ class KernelPCA(BaseTransformer):
|
|
155
199
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
156
200
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
157
201
|
for more details.
|
158
|
-
|
159
|
-
input_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or list of strings representing column names that contain features.
|
161
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
162
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
163
|
-
parameters are considered input columns.
|
164
|
-
|
165
|
-
label_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or list of strings representing column names that contain labels.
|
167
|
-
This is a required param for estimators, as there is no way to infer these
|
168
|
-
columns. If this parameter is not specified, then object is fitted without
|
169
|
-
labels (like a transformer).
|
170
|
-
|
171
|
-
output_cols: Optional[Union[str, List[str]]]
|
172
|
-
A string or list of strings representing column names that will store the
|
173
|
-
output of predict and transform operations. The length of output_cols must
|
174
|
-
match the expected number of output columns from the specific estimator or
|
175
|
-
transformer class used.
|
176
|
-
If this parameter is not specified, output column names are derived by
|
177
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
178
|
-
column names work for estimator's predict() method, but output_cols must
|
179
|
-
be set explicitly for transformers.
|
180
|
-
|
181
|
-
sample_weight_col: Optional[str]
|
182
|
-
A string representing the column name containing the sample weights.
|
183
|
-
This argument is only required when working with weighted datasets.
|
184
|
-
|
185
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
186
|
-
A string or a list of strings indicating column names to be excluded from any
|
187
|
-
operations (such as train, transform, or inference). These specified column(s)
|
188
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
189
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
190
|
-
columns, like index columns, during training or inference.
|
191
|
-
|
192
|
-
drop_input_cols: Optional[bool], default=False
|
193
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
194
202
|
"""
|
195
203
|
|
196
204
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -227,7 +235,7 @@ class KernelPCA(BaseTransformer):
|
|
227
235
|
self.set_passthrough_cols(passthrough_cols)
|
228
236
|
self.set_drop_input_cols(drop_input_cols)
|
229
237
|
self.set_sample_weight_col(sample_weight_col)
|
230
|
-
deps = set(
|
238
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
231
239
|
|
232
240
|
self._deps = list(deps)
|
233
241
|
|
@@ -251,13 +259,14 @@ class KernelPCA(BaseTransformer):
|
|
251
259
|
args=init_args,
|
252
260
|
klass=sklearn.decomposition.KernelPCA
|
253
261
|
)
|
254
|
-
self._sklearn_object = sklearn.decomposition.KernelPCA(
|
262
|
+
self._sklearn_object: Any = sklearn.decomposition.KernelPCA(
|
255
263
|
**cleaned_up_init_args,
|
256
264
|
)
|
257
265
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
258
266
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
259
267
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
260
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
268
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
269
|
+
self._autogenerated = True
|
261
270
|
|
262
271
|
def _get_rand_id(self) -> str:
|
263
272
|
"""
|
@@ -313,54 +322,48 @@ class KernelPCA(BaseTransformer):
|
|
313
322
|
self
|
314
323
|
"""
|
315
324
|
self._infer_input_output_cols(dataset)
|
316
|
-
if isinstance(dataset,
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
self.
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
325
|
+
if isinstance(dataset, DataFrame):
|
326
|
+
session = dataset._session
|
327
|
+
assert session is not None # keep mypy happy
|
328
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
329
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
330
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
331
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
332
|
+
|
333
|
+
# Specify input columns so column pruning will be enforced
|
334
|
+
selected_cols = self._get_active_columns()
|
335
|
+
if len(selected_cols) > 0:
|
336
|
+
dataset = dataset.select(selected_cols)
|
337
|
+
|
338
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
339
|
+
|
340
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
341
|
+
if SNOWML_SPROC_ENV in os.environ:
|
342
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
343
|
+
project=_PROJECT,
|
344
|
+
subproject=_SUBPROJECT,
|
345
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelPCA.__class__.__name__),
|
346
|
+
api_calls=[Session.call],
|
347
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
348
|
+
)
|
349
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
350
|
+
pd_df.columns = dataset.columns
|
351
|
+
dataset = pd_df
|
352
|
+
|
353
|
+
model_trainer = ModelTrainerBuilder.build(
|
354
|
+
estimator=self._sklearn_object,
|
355
|
+
dataset=dataset,
|
356
|
+
input_cols=self.input_cols,
|
357
|
+
label_cols=self.label_cols,
|
358
|
+
sample_weight_col=self.sample_weight_col,
|
359
|
+
autogenerated=self._autogenerated,
|
360
|
+
subproject=_SUBPROJECT
|
361
|
+
)
|
362
|
+
self._sklearn_object = model_trainer.train()
|
332
363
|
self._is_fitted = True
|
333
364
|
self._get_model_signatures(dataset)
|
334
365
|
return self
|
335
366
|
|
336
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
337
|
-
session = dataset._session
|
338
|
-
assert session is not None # keep mypy happy
|
339
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
340
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
341
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
342
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
343
|
-
|
344
|
-
# Specify input columns so column pruning will be enforced
|
345
|
-
selected_cols = self._get_active_columns()
|
346
|
-
if len(selected_cols) > 0:
|
347
|
-
dataset = dataset.select(selected_cols)
|
348
|
-
|
349
|
-
estimator = self._sklearn_object
|
350
|
-
assert estimator is not None # Keep mypy happy
|
351
|
-
|
352
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
353
|
-
|
354
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
355
|
-
dataset,
|
356
|
-
session,
|
357
|
-
estimator,
|
358
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
359
|
-
self.input_cols,
|
360
|
-
self.label_cols,
|
361
|
-
self.sample_weight_col,
|
362
|
-
)
|
363
|
-
|
364
367
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
365
368
|
if self._drop_input_cols:
|
366
369
|
return []
|
@@ -548,11 +551,6 @@ class KernelPCA(BaseTransformer):
|
|
548
551
|
subproject=_SUBPROJECT,
|
549
552
|
custom_tags=dict([("autogen", True)]),
|
550
553
|
)
|
551
|
-
@telemetry.add_stmt_params_to_df(
|
552
|
-
project=_PROJECT,
|
553
|
-
subproject=_SUBPROJECT,
|
554
|
-
custom_tags=dict([("autogen", True)]),
|
555
|
-
)
|
556
554
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
557
555
|
"""Method not supported for this class.
|
558
556
|
|
@@ -604,11 +602,6 @@ class KernelPCA(BaseTransformer):
|
|
604
602
|
subproject=_SUBPROJECT,
|
605
603
|
custom_tags=dict([("autogen", True)]),
|
606
604
|
)
|
607
|
-
@telemetry.add_stmt_params_to_df(
|
608
|
-
project=_PROJECT,
|
609
|
-
subproject=_SUBPROJECT,
|
610
|
-
custom_tags=dict([("autogen", True)]),
|
611
|
-
)
|
612
605
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
613
606
|
"""Transform X
|
614
607
|
For more details on this function, see [sklearn.decomposition.KernelPCA.transform]
|
@@ -667,7 +660,8 @@ class KernelPCA(BaseTransformer):
|
|
667
660
|
if False:
|
668
661
|
self.fit(dataset)
|
669
662
|
assert self._sklearn_object is not None
|
670
|
-
|
663
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
664
|
+
return labels
|
671
665
|
else:
|
672
666
|
raise NotImplementedError
|
673
667
|
|
@@ -703,6 +697,7 @@ class KernelPCA(BaseTransformer):
|
|
703
697
|
output_cols = []
|
704
698
|
|
705
699
|
# Make sure column names are valid snowflake identifiers.
|
700
|
+
assert output_cols is not None # Make MyPy happy
|
706
701
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
707
702
|
|
708
703
|
return rv
|
@@ -713,11 +708,6 @@ class KernelPCA(BaseTransformer):
|
|
713
708
|
subproject=_SUBPROJECT,
|
714
709
|
custom_tags=dict([("autogen", True)]),
|
715
710
|
)
|
716
|
-
@telemetry.add_stmt_params_to_df(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
711
|
def predict_proba(
|
722
712
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
723
713
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -758,11 +748,6 @@ class KernelPCA(BaseTransformer):
|
|
758
748
|
subproject=_SUBPROJECT,
|
759
749
|
custom_tags=dict([("autogen", True)]),
|
760
750
|
)
|
761
|
-
@telemetry.add_stmt_params_to_df(
|
762
|
-
project=_PROJECT,
|
763
|
-
subproject=_SUBPROJECT,
|
764
|
-
custom_tags=dict([("autogen", True)]),
|
765
|
-
)
|
766
751
|
def predict_log_proba(
|
767
752
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
768
753
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -799,16 +784,6 @@ class KernelPCA(BaseTransformer):
|
|
799
784
|
return output_df
|
800
785
|
|
801
786
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
802
|
-
@telemetry.send_api_usage_telemetry(
|
803
|
-
project=_PROJECT,
|
804
|
-
subproject=_SUBPROJECT,
|
805
|
-
custom_tags=dict([("autogen", True)]),
|
806
|
-
)
|
807
|
-
@telemetry.add_stmt_params_to_df(
|
808
|
-
project=_PROJECT,
|
809
|
-
subproject=_SUBPROJECT,
|
810
|
-
custom_tags=dict([("autogen", True)]),
|
811
|
-
)
|
812
787
|
def decision_function(
|
813
788
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
814
789
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -907,11 +882,6 @@ class KernelPCA(BaseTransformer):
|
|
907
882
|
subproject=_SUBPROJECT,
|
908
883
|
custom_tags=dict([("autogen", True)]),
|
909
884
|
)
|
910
|
-
@telemetry.add_stmt_params_to_df(
|
911
|
-
project=_PROJECT,
|
912
|
-
subproject=_SUBPROJECT,
|
913
|
-
custom_tags=dict([("autogen", True)]),
|
914
|
-
)
|
915
885
|
def kneighbors(
|
916
886
|
self,
|
917
887
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -971,9 +941,9 @@ class KernelPCA(BaseTransformer):
|
|
971
941
|
# For classifier, the type of predict is the same as the type of label
|
972
942
|
if self._sklearn_object._estimator_type == 'classifier':
|
973
943
|
# label columns is the desired type for output
|
974
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
944
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
975
945
|
# rename the output columns
|
976
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
946
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
977
947
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
978
948
|
([] if self._drop_input_cols else inputs)
|
979
949
|
+ outputs)
|