snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RBFSampler(BaseTransformer):
|
57
58
|
r"""Approximate a RBF kernel feature map using random Fourier features
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
|
@@ -60,56 +61,63 @@ class RBFSampler(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
gamma: 'scale' or float, default=1.0
|
64
|
-
Parameter of RBF kernel: exp(-gamma * x^2).
|
65
|
-
If ``gamma='scale'`` is passed then it uses
|
66
|
-
1 / (n_features * X.var()) as value of gamma.
|
67
|
-
|
68
|
-
n_components: int, default=100
|
69
|
-
Number of Monte Carlo samples per original feature.
|
70
|
-
Equals the dimensionality of the computed feature space.
|
71
|
-
|
72
|
-
random_state: int, RandomState instance or None, default=None
|
73
|
-
Pseudo-random number generator to control the generation of the random
|
74
|
-
weights and random offset when fitting the training data.
|
75
|
-
Pass an int for reproducible output across multiple function calls.
|
76
|
-
See :term:`Glossary <random_state>`.
|
77
64
|
|
78
65
|
input_cols: Optional[Union[str, List[str]]]
|
79
66
|
A string or list of strings representing column names that contain features.
|
80
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
81
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
82
|
-
parameters are considered input columns.
|
83
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
84
72
|
label_cols: Optional[Union[str, List[str]]]
|
85
|
-
|
86
|
-
|
87
|
-
columns. If this parameter is not specified, then object is fitted without
|
88
|
-
labels (like a transformer).
|
89
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
90
75
|
output_cols: Optional[Union[str, List[str]]]
|
91
76
|
A string or list of strings representing column names that will store the
|
92
77
|
output of predict and transform operations. The length of output_cols must
|
93
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
94
79
|
transformer class used.
|
95
|
-
If this parameter
|
96
|
-
|
97
|
-
|
98
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
99
89
|
|
100
90
|
sample_weight_col: Optional[str]
|
101
91
|
A string representing the column name containing the sample weights.
|
102
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
103
95
|
|
104
96
|
passthrough_cols: Optional[Union[str, List[str]]]
|
105
97
|
A string or a list of strings indicating column names to be excluded from any
|
106
98
|
operations (such as train, transform, or inference). These specified column(s)
|
107
99
|
will remain untouched throughout the process. This option is helpful in scenarios
|
108
100
|
requiring automatic input_cols inference, but need to avoid using specific
|
109
|
-
columns, like index columns, during training or inference.
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
110
103
|
|
111
104
|
drop_input_cols: Optional[bool], default=False
|
112
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
gamma: 'scale' or float, default=1.0
|
108
|
+
Parameter of RBF kernel: exp(-gamma * x^2).
|
109
|
+
If ``gamma='scale'`` is passed then it uses
|
110
|
+
1 / (n_features * X.var()) as value of gamma.
|
111
|
+
|
112
|
+
n_components: int, default=100
|
113
|
+
Number of Monte Carlo samples per original feature.
|
114
|
+
Equals the dimensionality of the computed feature space.
|
115
|
+
|
116
|
+
random_state: int, RandomState instance or None, default=None
|
117
|
+
Pseudo-random number generator to control the generation of the random
|
118
|
+
weights and random offset when fitting the training data.
|
119
|
+
Pass an int for reproducible output across multiple function calls.
|
120
|
+
See :term:`Glossary <random_state>`.
|
113
121
|
"""
|
114
122
|
|
115
123
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -133,7 +141,7 @@ class RBFSampler(BaseTransformer):
|
|
133
141
|
self.set_passthrough_cols(passthrough_cols)
|
134
142
|
self.set_drop_input_cols(drop_input_cols)
|
135
143
|
self.set_sample_weight_col(sample_weight_col)
|
136
|
-
deps = set(
|
144
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
137
145
|
|
138
146
|
self._deps = list(deps)
|
139
147
|
|
@@ -144,13 +152,14 @@ class RBFSampler(BaseTransformer):
|
|
144
152
|
args=init_args,
|
145
153
|
klass=sklearn.kernel_approximation.RBFSampler
|
146
154
|
)
|
147
|
-
self._sklearn_object = sklearn.kernel_approximation.RBFSampler(
|
155
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.RBFSampler(
|
148
156
|
**cleaned_up_init_args,
|
149
157
|
)
|
150
158
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
151
159
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
152
160
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
153
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
161
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
162
|
+
self._autogenerated = True
|
154
163
|
|
155
164
|
def _get_rand_id(self) -> str:
|
156
165
|
"""
|
@@ -206,54 +215,48 @@ class RBFSampler(BaseTransformer):
|
|
206
215
|
self
|
207
216
|
"""
|
208
217
|
self._infer_input_output_cols(dataset)
|
209
|
-
if isinstance(dataset,
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
self.
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
218
|
+
if isinstance(dataset, DataFrame):
|
219
|
+
session = dataset._session
|
220
|
+
assert session is not None # keep mypy happy
|
221
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
222
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
223
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
224
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
225
|
+
|
226
|
+
# Specify input columns so column pruning will be enforced
|
227
|
+
selected_cols = self._get_active_columns()
|
228
|
+
if len(selected_cols) > 0:
|
229
|
+
dataset = dataset.select(selected_cols)
|
230
|
+
|
231
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
232
|
+
|
233
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
234
|
+
if SNOWML_SPROC_ENV in os.environ:
|
235
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
236
|
+
project=_PROJECT,
|
237
|
+
subproject=_SUBPROJECT,
|
238
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RBFSampler.__class__.__name__),
|
239
|
+
api_calls=[Session.call],
|
240
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
241
|
+
)
|
242
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
|
+
pd_df.columns = dataset.columns
|
244
|
+
dataset = pd_df
|
245
|
+
|
246
|
+
model_trainer = ModelTrainerBuilder.build(
|
247
|
+
estimator=self._sklearn_object,
|
248
|
+
dataset=dataset,
|
249
|
+
input_cols=self.input_cols,
|
250
|
+
label_cols=self.label_cols,
|
251
|
+
sample_weight_col=self.sample_weight_col,
|
252
|
+
autogenerated=self._autogenerated,
|
253
|
+
subproject=_SUBPROJECT
|
254
|
+
)
|
255
|
+
self._sklearn_object = model_trainer.train()
|
225
256
|
self._is_fitted = True
|
226
257
|
self._get_model_signatures(dataset)
|
227
258
|
return self
|
228
259
|
|
229
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
230
|
-
session = dataset._session
|
231
|
-
assert session is not None # keep mypy happy
|
232
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
233
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
234
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
235
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
236
|
-
|
237
|
-
# Specify input columns so column pruning will be enforced
|
238
|
-
selected_cols = self._get_active_columns()
|
239
|
-
if len(selected_cols) > 0:
|
240
|
-
dataset = dataset.select(selected_cols)
|
241
|
-
|
242
|
-
estimator = self._sklearn_object
|
243
|
-
assert estimator is not None # Keep mypy happy
|
244
|
-
|
245
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
246
|
-
|
247
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
248
|
-
dataset,
|
249
|
-
session,
|
250
|
-
estimator,
|
251
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
252
|
-
self.input_cols,
|
253
|
-
self.label_cols,
|
254
|
-
self.sample_weight_col,
|
255
|
-
)
|
256
|
-
|
257
260
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
258
261
|
if self._drop_input_cols:
|
259
262
|
return []
|
@@ -441,11 +444,6 @@ class RBFSampler(BaseTransformer):
|
|
441
444
|
subproject=_SUBPROJECT,
|
442
445
|
custom_tags=dict([("autogen", True)]),
|
443
446
|
)
|
444
|
-
@telemetry.add_stmt_params_to_df(
|
445
|
-
project=_PROJECT,
|
446
|
-
subproject=_SUBPROJECT,
|
447
|
-
custom_tags=dict([("autogen", True)]),
|
448
|
-
)
|
449
447
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
450
448
|
"""Method not supported for this class.
|
451
449
|
|
@@ -497,11 +495,6 @@ class RBFSampler(BaseTransformer):
|
|
497
495
|
subproject=_SUBPROJECT,
|
498
496
|
custom_tags=dict([("autogen", True)]),
|
499
497
|
)
|
500
|
-
@telemetry.add_stmt_params_to_df(
|
501
|
-
project=_PROJECT,
|
502
|
-
subproject=_SUBPROJECT,
|
503
|
-
custom_tags=dict([("autogen", True)]),
|
504
|
-
)
|
505
498
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
506
499
|
"""Apply the approximate feature map to X
|
507
500
|
For more details on this function, see [sklearn.kernel_approximation.RBFSampler.transform]
|
@@ -560,7 +553,8 @@ class RBFSampler(BaseTransformer):
|
|
560
553
|
if False:
|
561
554
|
self.fit(dataset)
|
562
555
|
assert self._sklearn_object is not None
|
563
|
-
|
556
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
557
|
+
return labels
|
564
558
|
else:
|
565
559
|
raise NotImplementedError
|
566
560
|
|
@@ -596,6 +590,7 @@ class RBFSampler(BaseTransformer):
|
|
596
590
|
output_cols = []
|
597
591
|
|
598
592
|
# Make sure column names are valid snowflake identifiers.
|
593
|
+
assert output_cols is not None # Make MyPy happy
|
599
594
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
600
595
|
|
601
596
|
return rv
|
@@ -606,11 +601,6 @@ class RBFSampler(BaseTransformer):
|
|
606
601
|
subproject=_SUBPROJECT,
|
607
602
|
custom_tags=dict([("autogen", True)]),
|
608
603
|
)
|
609
|
-
@telemetry.add_stmt_params_to_df(
|
610
|
-
project=_PROJECT,
|
611
|
-
subproject=_SUBPROJECT,
|
612
|
-
custom_tags=dict([("autogen", True)]),
|
613
|
-
)
|
614
604
|
def predict_proba(
|
615
605
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
616
606
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -651,11 +641,6 @@ class RBFSampler(BaseTransformer):
|
|
651
641
|
subproject=_SUBPROJECT,
|
652
642
|
custom_tags=dict([("autogen", True)]),
|
653
643
|
)
|
654
|
-
@telemetry.add_stmt_params_to_df(
|
655
|
-
project=_PROJECT,
|
656
|
-
subproject=_SUBPROJECT,
|
657
|
-
custom_tags=dict([("autogen", True)]),
|
658
|
-
)
|
659
644
|
def predict_log_proba(
|
660
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
661
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -692,16 +677,6 @@ class RBFSampler(BaseTransformer):
|
|
692
677
|
return output_df
|
693
678
|
|
694
679
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
695
|
-
@telemetry.send_api_usage_telemetry(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
|
-
@telemetry.add_stmt_params_to_df(
|
701
|
-
project=_PROJECT,
|
702
|
-
subproject=_SUBPROJECT,
|
703
|
-
custom_tags=dict([("autogen", True)]),
|
704
|
-
)
|
705
680
|
def decision_function(
|
706
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
707
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -800,11 +775,6 @@ class RBFSampler(BaseTransformer):
|
|
800
775
|
subproject=_SUBPROJECT,
|
801
776
|
custom_tags=dict([("autogen", True)]),
|
802
777
|
)
|
803
|
-
@telemetry.add_stmt_params_to_df(
|
804
|
-
project=_PROJECT,
|
805
|
-
subproject=_SUBPROJECT,
|
806
|
-
custom_tags=dict([("autogen", True)]),
|
807
|
-
)
|
808
778
|
def kneighbors(
|
809
779
|
self,
|
810
780
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -864,9 +834,9 @@ class RBFSampler(BaseTransformer):
|
|
864
834
|
# For classifier, the type of predict is the same as the type of label
|
865
835
|
if self._sklearn_object._estimator_type == 'classifier':
|
866
836
|
# label columns is the desired type for output
|
867
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
837
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
868
838
|
# rename the output columns
|
869
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
839
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
870
840
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
871
841
|
([] if self._drop_input_cols else inputs)
|
872
842
|
+ outputs)
|