snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RBFSampler(BaseTransformer):
57
58
  r"""Approximate a RBF kernel feature map using random Fourier features
58
59
  For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
@@ -60,56 +61,63 @@ class RBFSampler(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- gamma: 'scale' or float, default=1.0
64
- Parameter of RBF kernel: exp(-gamma * x^2).
65
- If ``gamma='scale'`` is passed then it uses
66
- 1 / (n_features * X.var()) as value of gamma.
67
-
68
- n_components: int, default=100
69
- Number of Monte Carlo samples per original feature.
70
- Equals the dimensionality of the computed feature space.
71
-
72
- random_state: int, RandomState instance or None, default=None
73
- Pseudo-random number generator to control the generation of the random
74
- weights and random offset when fitting the training data.
75
- Pass an int for reproducible output across multiple function calls.
76
- See :term:`Glossary <random_state>`.
77
64
 
78
65
  input_cols: Optional[Union[str, List[str]]]
79
66
  A string or list of strings representing column names that contain features.
80
67
  If this parameter is not specified, all columns in the input DataFrame except
81
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
82
- parameters are considered input columns.
83
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
84
72
  label_cols: Optional[Union[str, List[str]]]
85
- A string or list of strings representing column names that contain labels.
86
- This is a required param for estimators, as there is no way to infer these
87
- columns. If this parameter is not specified, then object is fitted without
88
- labels (like a transformer).
89
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
90
75
  output_cols: Optional[Union[str, List[str]]]
91
76
  A string or list of strings representing column names that will store the
92
77
  output of predict and transform operations. The length of output_cols must
93
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
94
79
  transformer class used.
95
- If this parameter is not specified, output column names are derived by
96
- adding an OUTPUT_ prefix to the label column names. These inferred output
97
- column names work for estimator's predict() method, but output_cols must
98
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
99
89
 
100
90
  sample_weight_col: Optional[str]
101
91
  A string representing the column name containing the sample weights.
102
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
103
95
 
104
96
  passthrough_cols: Optional[Union[str, List[str]]]
105
97
  A string or a list of strings indicating column names to be excluded from any
106
98
  operations (such as train, transform, or inference). These specified column(s)
107
99
  will remain untouched throughout the process. This option is helpful in scenarios
108
100
  requiring automatic input_cols inference, but need to avoid using specific
109
- columns, like index columns, during training or inference.
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
110
103
 
111
104
  drop_input_cols: Optional[bool], default=False
112
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ gamma: 'scale' or float, default=1.0
108
+ Parameter of RBF kernel: exp(-gamma * x^2).
109
+ If ``gamma='scale'`` is passed then it uses
110
+ 1 / (n_features * X.var()) as value of gamma.
111
+
112
+ n_components: int, default=100
113
+ Number of Monte Carlo samples per original feature.
114
+ Equals the dimensionality of the computed feature space.
115
+
116
+ random_state: int, RandomState instance or None, default=None
117
+ Pseudo-random number generator to control the generation of the random
118
+ weights and random offset when fitting the training data.
119
+ Pass an int for reproducible output across multiple function calls.
120
+ See :term:`Glossary <random_state>`.
113
121
  """
114
122
 
115
123
  def __init__( # type: ignore[no-untyped-def]
@@ -133,7 +141,7 @@ class RBFSampler(BaseTransformer):
133
141
  self.set_passthrough_cols(passthrough_cols)
134
142
  self.set_drop_input_cols(drop_input_cols)
135
143
  self.set_sample_weight_col(sample_weight_col)
136
- deps = set(SklearnWrapperProvider().dependencies)
144
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
137
145
 
138
146
  self._deps = list(deps)
139
147
 
@@ -144,13 +152,14 @@ class RBFSampler(BaseTransformer):
144
152
  args=init_args,
145
153
  klass=sklearn.kernel_approximation.RBFSampler
146
154
  )
147
- self._sklearn_object = sklearn.kernel_approximation.RBFSampler(
155
+ self._sklearn_object: Any = sklearn.kernel_approximation.RBFSampler(
148
156
  **cleaned_up_init_args,
149
157
  )
150
158
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
151
159
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
152
160
  self._snowpark_cols: Optional[List[str]] = self.input_cols
153
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
161
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
162
+ self._autogenerated = True
154
163
 
155
164
  def _get_rand_id(self) -> str:
156
165
  """
@@ -206,54 +215,48 @@ class RBFSampler(BaseTransformer):
206
215
  self
207
216
  """
208
217
  self._infer_input_output_cols(dataset)
209
- if isinstance(dataset, pd.DataFrame):
210
- assert self._sklearn_object is not None # keep mypy happy
211
- self._sklearn_object = self._handlers.fit_pandas(
212
- dataset,
213
- self._sklearn_object,
214
- self.input_cols,
215
- self.label_cols,
216
- self.sample_weight_col
217
- )
218
- elif isinstance(dataset, DataFrame):
219
- self._fit_snowpark(dataset)
220
- else:
221
- raise TypeError(
222
- f"Unexpected dataset type: {type(dataset)}."
223
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
224
- )
218
+ if isinstance(dataset, DataFrame):
219
+ session = dataset._session
220
+ assert session is not None # keep mypy happy
221
+ # Validate that key package version in user workspace are supported in snowflake conda channel
222
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
223
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
224
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
225
+
226
+ # Specify input columns so column pruning will be enforced
227
+ selected_cols = self._get_active_columns()
228
+ if len(selected_cols) > 0:
229
+ dataset = dataset.select(selected_cols)
230
+
231
+ self._snowpark_cols = dataset.select(self.input_cols).columns
232
+
233
+ # If we are already in a stored procedure, no need to kick off another one.
234
+ if SNOWML_SPROC_ENV in os.environ:
235
+ statement_params = telemetry.get_function_usage_statement_params(
236
+ project=_PROJECT,
237
+ subproject=_SUBPROJECT,
238
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RBFSampler.__class__.__name__),
239
+ api_calls=[Session.call],
240
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
241
+ )
242
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
243
+ pd_df.columns = dataset.columns
244
+ dataset = pd_df
245
+
246
+ model_trainer = ModelTrainerBuilder.build(
247
+ estimator=self._sklearn_object,
248
+ dataset=dataset,
249
+ input_cols=self.input_cols,
250
+ label_cols=self.label_cols,
251
+ sample_weight_col=self.sample_weight_col,
252
+ autogenerated=self._autogenerated,
253
+ subproject=_SUBPROJECT
254
+ )
255
+ self._sklearn_object = model_trainer.train()
225
256
  self._is_fitted = True
226
257
  self._get_model_signatures(dataset)
227
258
  return self
228
259
 
229
- def _fit_snowpark(self, dataset: DataFrame) -> None:
230
- session = dataset._session
231
- assert session is not None # keep mypy happy
232
- # Validate that key package version in user workspace are supported in snowflake conda channel
233
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
234
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
235
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
236
-
237
- # Specify input columns so column pruning will be enforced
238
- selected_cols = self._get_active_columns()
239
- if len(selected_cols) > 0:
240
- dataset = dataset.select(selected_cols)
241
-
242
- estimator = self._sklearn_object
243
- assert estimator is not None # Keep mypy happy
244
-
245
- self._snowpark_cols = dataset.select(self.input_cols).columns
246
-
247
- self._sklearn_object = self._handlers.fit_snowpark(
248
- dataset,
249
- session,
250
- estimator,
251
- ["snowflake-snowpark-python"] + self._get_dependencies(),
252
- self.input_cols,
253
- self.label_cols,
254
- self.sample_weight_col,
255
- )
256
-
257
260
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
258
261
  if self._drop_input_cols:
259
262
  return []
@@ -441,11 +444,6 @@ class RBFSampler(BaseTransformer):
441
444
  subproject=_SUBPROJECT,
442
445
  custom_tags=dict([("autogen", True)]),
443
446
  )
444
- @telemetry.add_stmt_params_to_df(
445
- project=_PROJECT,
446
- subproject=_SUBPROJECT,
447
- custom_tags=dict([("autogen", True)]),
448
- )
449
447
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
450
448
  """Method not supported for this class.
451
449
 
@@ -497,11 +495,6 @@ class RBFSampler(BaseTransformer):
497
495
  subproject=_SUBPROJECT,
498
496
  custom_tags=dict([("autogen", True)]),
499
497
  )
500
- @telemetry.add_stmt_params_to_df(
501
- project=_PROJECT,
502
- subproject=_SUBPROJECT,
503
- custom_tags=dict([("autogen", True)]),
504
- )
505
498
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
506
499
  """Apply the approximate feature map to X
507
500
  For more details on this function, see [sklearn.kernel_approximation.RBFSampler.transform]
@@ -560,7 +553,8 @@ class RBFSampler(BaseTransformer):
560
553
  if False:
561
554
  self.fit(dataset)
562
555
  assert self._sklearn_object is not None
563
- return self._sklearn_object.labels_
556
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
557
+ return labels
564
558
  else:
565
559
  raise NotImplementedError
566
560
 
@@ -596,6 +590,7 @@ class RBFSampler(BaseTransformer):
596
590
  output_cols = []
597
591
 
598
592
  # Make sure column names are valid snowflake identifiers.
593
+ assert output_cols is not None # Make MyPy happy
599
594
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
600
595
 
601
596
  return rv
@@ -606,11 +601,6 @@ class RBFSampler(BaseTransformer):
606
601
  subproject=_SUBPROJECT,
607
602
  custom_tags=dict([("autogen", True)]),
608
603
  )
609
- @telemetry.add_stmt_params_to_df(
610
- project=_PROJECT,
611
- subproject=_SUBPROJECT,
612
- custom_tags=dict([("autogen", True)]),
613
- )
614
604
  def predict_proba(
615
605
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
616
606
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -651,11 +641,6 @@ class RBFSampler(BaseTransformer):
651
641
  subproject=_SUBPROJECT,
652
642
  custom_tags=dict([("autogen", True)]),
653
643
  )
654
- @telemetry.add_stmt_params_to_df(
655
- project=_PROJECT,
656
- subproject=_SUBPROJECT,
657
- custom_tags=dict([("autogen", True)]),
658
- )
659
644
  def predict_log_proba(
660
645
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
661
646
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -692,16 +677,6 @@ class RBFSampler(BaseTransformer):
692
677
  return output_df
693
678
 
694
679
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
695
- @telemetry.send_api_usage_telemetry(
696
- project=_PROJECT,
697
- subproject=_SUBPROJECT,
698
- custom_tags=dict([("autogen", True)]),
699
- )
700
- @telemetry.add_stmt_params_to_df(
701
- project=_PROJECT,
702
- subproject=_SUBPROJECT,
703
- custom_tags=dict([("autogen", True)]),
704
- )
705
680
  def decision_function(
706
681
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
707
682
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -800,11 +775,6 @@ class RBFSampler(BaseTransformer):
800
775
  subproject=_SUBPROJECT,
801
776
  custom_tags=dict([("autogen", True)]),
802
777
  )
803
- @telemetry.add_stmt_params_to_df(
804
- project=_PROJECT,
805
- subproject=_SUBPROJECT,
806
- custom_tags=dict([("autogen", True)]),
807
- )
808
778
  def kneighbors(
809
779
  self,
810
780
  dataset: Union[DataFrame, pd.DataFrame],
@@ -864,9 +834,9 @@ class RBFSampler(BaseTransformer):
864
834
  # For classifier, the type of predict is the same as the type of label
865
835
  if self._sklearn_object._estimator_type == 'classifier':
866
836
  # label columns is the desired type for output
867
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
837
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
868
838
  # rename the output columns
869
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
839
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
870
840
  self._model_signature_dict["predict"] = ModelSignature(inputs,
871
841
  ([] if self._drop_input_cols else inputs)
872
842
  + outputs)