snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class DecisionTreeRegressor(BaseTransformer):
|
57
58
|
r"""A decision tree regressor
|
58
59
|
For more details on this class, see [sklearn.tree.DecisionTreeRegressor]
|
@@ -60,6 +61,51 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error"
|
64
110
|
The function to measure the quality of a split. Supported criteria
|
65
111
|
are "squared_error" for the mean squared error, which is equal to
|
@@ -158,42 +204,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
158
204
|
subtree with the largest cost complexity that is smaller than
|
159
205
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
160
206
|
:ref:`minimal_cost_complexity_pruning` for details.
|
161
|
-
|
162
|
-
input_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or list of strings representing column names that contain features.
|
164
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
165
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
166
|
-
parameters are considered input columns.
|
167
|
-
|
168
|
-
label_cols: Optional[Union[str, List[str]]]
|
169
|
-
A string or list of strings representing column names that contain labels.
|
170
|
-
This is a required param for estimators, as there is no way to infer these
|
171
|
-
columns. If this parameter is not specified, then object is fitted without
|
172
|
-
labels (like a transformer).
|
173
|
-
|
174
|
-
output_cols: Optional[Union[str, List[str]]]
|
175
|
-
A string or list of strings representing column names that will store the
|
176
|
-
output of predict and transform operations. The length of output_cols must
|
177
|
-
match the expected number of output columns from the specific estimator or
|
178
|
-
transformer class used.
|
179
|
-
If this parameter is not specified, output column names are derived by
|
180
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
181
|
-
column names work for estimator's predict() method, but output_cols must
|
182
|
-
be set explicitly for transformers.
|
183
|
-
|
184
|
-
sample_weight_col: Optional[str]
|
185
|
-
A string representing the column name containing the sample weights.
|
186
|
-
This argument is only required when working with weighted datasets.
|
187
|
-
|
188
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
189
|
-
A string or a list of strings indicating column names to be excluded from any
|
190
|
-
operations (such as train, transform, or inference). These specified column(s)
|
191
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
192
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
193
|
-
columns, like index columns, during training or inference.
|
194
|
-
|
195
|
-
drop_input_cols: Optional[bool], default=False
|
196
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
197
207
|
"""
|
198
208
|
|
199
209
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -225,7 +235,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
225
235
|
self.set_passthrough_cols(passthrough_cols)
|
226
236
|
self.set_drop_input_cols(drop_input_cols)
|
227
237
|
self.set_sample_weight_col(sample_weight_col)
|
228
|
-
deps = set(
|
238
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
229
239
|
|
230
240
|
self._deps = list(deps)
|
231
241
|
|
@@ -244,13 +254,14 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
244
254
|
args=init_args,
|
245
255
|
klass=sklearn.tree.DecisionTreeRegressor
|
246
256
|
)
|
247
|
-
self._sklearn_object = sklearn.tree.DecisionTreeRegressor(
|
257
|
+
self._sklearn_object: Any = sklearn.tree.DecisionTreeRegressor(
|
248
258
|
**cleaned_up_init_args,
|
249
259
|
)
|
250
260
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
251
261
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
252
262
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
253
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
263
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
264
|
+
self._autogenerated = True
|
254
265
|
|
255
266
|
def _get_rand_id(self) -> str:
|
256
267
|
"""
|
@@ -306,54 +317,48 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
306
317
|
self
|
307
318
|
"""
|
308
319
|
self._infer_input_output_cols(dataset)
|
309
|
-
if isinstance(dataset,
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
self.
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
320
|
+
if isinstance(dataset, DataFrame):
|
321
|
+
session = dataset._session
|
322
|
+
assert session is not None # keep mypy happy
|
323
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
324
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
325
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
326
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
327
|
+
|
328
|
+
# Specify input columns so column pruning will be enforced
|
329
|
+
selected_cols = self._get_active_columns()
|
330
|
+
if len(selected_cols) > 0:
|
331
|
+
dataset = dataset.select(selected_cols)
|
332
|
+
|
333
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
334
|
+
|
335
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
336
|
+
if SNOWML_SPROC_ENV in os.environ:
|
337
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
338
|
+
project=_PROJECT,
|
339
|
+
subproject=_SUBPROJECT,
|
340
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeRegressor.__class__.__name__),
|
341
|
+
api_calls=[Session.call],
|
342
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
343
|
+
)
|
344
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
345
|
+
pd_df.columns = dataset.columns
|
346
|
+
dataset = pd_df
|
347
|
+
|
348
|
+
model_trainer = ModelTrainerBuilder.build(
|
349
|
+
estimator=self._sklearn_object,
|
350
|
+
dataset=dataset,
|
351
|
+
input_cols=self.input_cols,
|
352
|
+
label_cols=self.label_cols,
|
353
|
+
sample_weight_col=self.sample_weight_col,
|
354
|
+
autogenerated=self._autogenerated,
|
355
|
+
subproject=_SUBPROJECT
|
356
|
+
)
|
357
|
+
self._sklearn_object = model_trainer.train()
|
325
358
|
self._is_fitted = True
|
326
359
|
self._get_model_signatures(dataset)
|
327
360
|
return self
|
328
361
|
|
329
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
330
|
-
session = dataset._session
|
331
|
-
assert session is not None # keep mypy happy
|
332
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
333
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
334
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
335
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
336
|
-
|
337
|
-
# Specify input columns so column pruning will be enforced
|
338
|
-
selected_cols = self._get_active_columns()
|
339
|
-
if len(selected_cols) > 0:
|
340
|
-
dataset = dataset.select(selected_cols)
|
341
|
-
|
342
|
-
estimator = self._sklearn_object
|
343
|
-
assert estimator is not None # Keep mypy happy
|
344
|
-
|
345
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
346
|
-
|
347
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
348
|
-
dataset,
|
349
|
-
session,
|
350
|
-
estimator,
|
351
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
352
|
-
self.input_cols,
|
353
|
-
self.label_cols,
|
354
|
-
self.sample_weight_col,
|
355
|
-
)
|
356
|
-
|
357
362
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
358
363
|
if self._drop_input_cols:
|
359
364
|
return []
|
@@ -541,11 +546,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
541
546
|
subproject=_SUBPROJECT,
|
542
547
|
custom_tags=dict([("autogen", True)]),
|
543
548
|
)
|
544
|
-
@telemetry.add_stmt_params_to_df(
|
545
|
-
project=_PROJECT,
|
546
|
-
subproject=_SUBPROJECT,
|
547
|
-
custom_tags=dict([("autogen", True)]),
|
548
|
-
)
|
549
549
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
550
550
|
"""Predict class or regression value for X
|
551
551
|
For more details on this function, see [sklearn.tree.DecisionTreeRegressor.predict]
|
@@ -599,11 +599,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
599
599
|
subproject=_SUBPROJECT,
|
600
600
|
custom_tags=dict([("autogen", True)]),
|
601
601
|
)
|
602
|
-
@telemetry.add_stmt_params_to_df(
|
603
|
-
project=_PROJECT,
|
604
|
-
subproject=_SUBPROJECT,
|
605
|
-
custom_tags=dict([("autogen", True)]),
|
606
|
-
)
|
607
602
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
608
603
|
"""Method not supported for this class.
|
609
604
|
|
@@ -660,7 +655,8 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
660
655
|
if False:
|
661
656
|
self.fit(dataset)
|
662
657
|
assert self._sklearn_object is not None
|
663
|
-
|
658
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
659
|
+
return labels
|
664
660
|
else:
|
665
661
|
raise NotImplementedError
|
666
662
|
|
@@ -696,6 +692,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
696
692
|
output_cols = []
|
697
693
|
|
698
694
|
# Make sure column names are valid snowflake identifiers.
|
695
|
+
assert output_cols is not None # Make MyPy happy
|
699
696
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
700
697
|
|
701
698
|
return rv
|
@@ -706,11 +703,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
706
703
|
subproject=_SUBPROJECT,
|
707
704
|
custom_tags=dict([("autogen", True)]),
|
708
705
|
)
|
709
|
-
@telemetry.add_stmt_params_to_df(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
706
|
def predict_proba(
|
715
707
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
716
708
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -751,11 +743,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
751
743
|
subproject=_SUBPROJECT,
|
752
744
|
custom_tags=dict([("autogen", True)]),
|
753
745
|
)
|
754
|
-
@telemetry.add_stmt_params_to_df(
|
755
|
-
project=_PROJECT,
|
756
|
-
subproject=_SUBPROJECT,
|
757
|
-
custom_tags=dict([("autogen", True)]),
|
758
|
-
)
|
759
746
|
def predict_log_proba(
|
760
747
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
761
748
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -792,16 +779,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
792
779
|
return output_df
|
793
780
|
|
794
781
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
795
|
-
@telemetry.send_api_usage_telemetry(
|
796
|
-
project=_PROJECT,
|
797
|
-
subproject=_SUBPROJECT,
|
798
|
-
custom_tags=dict([("autogen", True)]),
|
799
|
-
)
|
800
|
-
@telemetry.add_stmt_params_to_df(
|
801
|
-
project=_PROJECT,
|
802
|
-
subproject=_SUBPROJECT,
|
803
|
-
custom_tags=dict([("autogen", True)]),
|
804
|
-
)
|
805
782
|
def decision_function(
|
806
783
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
807
784
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -902,11 +879,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
902
879
|
subproject=_SUBPROJECT,
|
903
880
|
custom_tags=dict([("autogen", True)]),
|
904
881
|
)
|
905
|
-
@telemetry.add_stmt_params_to_df(
|
906
|
-
project=_PROJECT,
|
907
|
-
subproject=_SUBPROJECT,
|
908
|
-
custom_tags=dict([("autogen", True)]),
|
909
|
-
)
|
910
882
|
def kneighbors(
|
911
883
|
self,
|
912
884
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -966,9 +938,9 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
966
938
|
# For classifier, the type of predict is the same as the type of label
|
967
939
|
if self._sklearn_object._estimator_type == 'classifier':
|
968
940
|
# label columns is the desired type for output
|
969
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
941
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
970
942
|
# rename the output columns
|
971
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
943
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
972
944
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
973
945
|
([] if self._drop_input_cols else inputs)
|
974
946
|
+ outputs)
|