snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,347 @@
1
+ snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
+ snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
3
+ snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
+ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
5
+ snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
+ snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
+ snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
9
+ snowflake/ml/_internal/env_utils.py,sha256=lKLjqTnnq5Hhn_072Cmg1VlpJw8zGxBFtTeZIKZC_WM,25731
10
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=a6c6yTgCR-Fwqk2rpjRPS__fJjrcE2G1aj3r57uWCbY,5177
11
+ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
12
+ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
13
+ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
14
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
15
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
16
+ snowflake/ml/_internal/file_utils.py,sha256=n16qTQ2h10huLV3HyEc2mztELydcK3WsMcGzmCHOdUU,13207
17
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
18
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
+ snowflake/ml/_internal/telemetry.py,sha256=a7quIbktsSY4eHVfDxkfZmiLERwSm8CuJUOTMXF9c-M,21825
20
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
21
+ snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
22
+ snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
23
+ snowflake/ml/_internal/utils/image_registry_http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
24
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
25
+ snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
26
+ snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
27
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=tpu6B0HKpbT-svvU2Pbz7zNqzg-jgoSmwYvtTzXYyzw,5857
28
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=QoGXiPMPB3LMdadhwizBwvTdXph0zAde6CSVcqiO_5M,10583
29
+ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
30
+ snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
31
+ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
32
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
33
+ snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
34
+ snowflake/ml/_internal/utils/spcs_image_registry.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
35
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=BYd0_ZNHjbpP33XeVLOcnhZXCrIschQegpE_hXXJ4bw,3502
36
+ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
37
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
38
+ snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
39
+ snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
40
+ snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
41
+ snowflake/ml/fileset/parquet_parser.py,sha256=Fo1utyn94fJ-p74vQ6rA2EX0QJiHEQnWbKM4I4bhT0A,5918
42
+ snowflake/ml/fileset/sfcfs.py,sha256=w27A8GffBoM1oMo6IfxafUNuMOC6_qr-fOy4Vpc-nEA,11968
43
+ snowflake/ml/fileset/stage_fs.py,sha256=Qu9-yzcPqabRiDP_mUjq4NFodp_xCMP9N-0Gfc0-PiI,15908
44
+ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
45
+ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
46
+ snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
47
+ snowflake/ml/model/_client/model/model_impl.py,sha256=Zc-wSLXxii7DCgMfoEYcDxRWpdVcbQx_0XsAylejZwg,6153
48
+ snowflake/ml/model/_client/model/model_method_info.py,sha256=qYjZlMbsrHpueyBw1Tt3E2Q1CH_-AREzwVWwDcsHNMk,491
49
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=D597yI0u_pgHGwbJEur7SZgQpiYBbBCklU0d9JqGsFg,11052
50
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=FbC3JgxKZ9G36FJhA8Vld3szN4nsyJM-uIx10vz43v0,4130
51
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=W3Rldu9KgI1fivXJgNZh5b1Cb9KsHe7LpljSf2UWfQM,11794
52
+ snowflake/ml/model/_client/sql/model.py,sha256=9pwTV6Q168QlCqFU-IETH3cvLdtwTCi2O8hZp1LVwxw,2806
53
+ snowflake/ml/model/_client/sql/model_version.py,sha256=NN9icPZdK8IdQ78Tc-ATz2uyz6rR3hdvyimBo_P-pzQ,8075
54
+ snowflake/ml/model/_client/sql/stage.py,sha256=bGYx6xc19uuA-QOjw-EXMxYi7tqWuDJAaiBwayko6_o,1344
55
+ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
56
+ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=zsPgZx5xup0obcsB0Y_o4AG683Ek94E6Yn55IeyUeQ0,10671
57
+ snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7hB44ABsKvUZsaQV6UXTY7JakfNN0lpE4t7qkq-Slos,6228
58
+ snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
59
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=0XYmBtUlWJdPTcT6cyQySXByVpa1dzf-yOHSb59CPIY,11179
60
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=7hqrWa45cQB_guf7yg601kEdWyiZuNbF7hwkmL2P45E,9649
61
+ snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
62
+ snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
63
+ snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
64
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=ABlB2VEx_MFdzhLdEiXrC1dbywdkZJQpDil9-f2agXc,28810
65
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=cymya_M0r0Tekepi0j3w5_9vEyBWgZ9JvQA0rMBJhBQ,5175
66
+ snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=UTMTGnC8EfB49fyV-zg3vuFUOYqy3Ig17EEo7nTwO94,156
67
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
68
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
69
+ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
70
+ snowflake/ml/model/_deploy_client/utils/image_registry_client.py,sha256=tYxt-Ge886uiLCKQYGFrzetG4i1NQcOjKVH5N9mnnhY,9110
71
+ snowflake/ml/model/_deploy_client/utils/imagelib.py,sha256=5YUPG31dKD8q7Eiis8G41qYRhwQOWnZhNw0gLjn1kkA,14485
72
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S9EbqRvTx4xOZLQo7Dqyz1Lrw2KOwj_zc,12869
73
+ snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=qJV1Yi6hfdJ3Ay8wyqS4Jz1cTm0bVLFtoNsgz_FTq3g,7677
74
+ snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
75
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
76
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=avKG931OCFZVrlBjAv9R7UiSc-4X3a3XFXX4LlI1OOs,4258
77
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=wVS37mAhdzSkdkW-LZcQ3MU2T1XfdSREzCOyUAUh0_Y,1194
78
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=CCzD07OnbX2vkMO6qgQCCDM-dpCz0gthuRHC438ntpQ,1645
79
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
80
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=RyR7ayq0K8aqmTzJfn4jXnNa6tflE3Br8F2hfcFTwik,5351
81
+ snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=jf96gr4xT2QQt2mJ9SixbG8W5psWYR3TmwgCEt25bdQ,204
82
+ snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=-a93izywHKSEuwmV_OWAyKwnBaeM29EHw99pA1oHF7Y,4114
83
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
84
+ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
85
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=1K0H3Iio3r3UK5Ryd2-EvdvLGsBrH6uefop7W64ba4U,6023
86
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=gfDr6WyClxWzd0Nkg7AN8v5d2OsiatVqGqOlHHyynl4,2597
87
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=ahpjdOU-77L5Z7QBKmIGiNpB0Y6LF3SWF3Y91TRh5CU,7280
88
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BueHnKxgU7NfQZZsa-Ctu1B8Ce3s2mT0DrmHzu22ib0,19983
89
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=0Dod1nFNQfsF_7rIC4LLnp9eucMsracv0vVNZey1eBY,10767
90
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=nyk-ty7HlmO8Q3SNJCk0bw91JiFCChdEqJ0aw459e_A,8988
91
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=7kp7OobwIbbVoO8LQ2jONBgEdHbLrTkIJi0UBhiutsU,7829
92
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=mvDX7VN-J3QSI3hb2-O9WVf3tjhGviBSUNUE436l0ow,8025
93
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Ln7t_N8r3Uq57glRXXSc3vRiHJpkMFOKQK62yDNFfk0,7252
94
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=xXSZfyN-zqSwTkrcUi0YZ0AUo5sC0D_Ji_ppBeqa8Ts,8134
95
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=MCfrUTBNwQfnNGUrHVYRFLZLQeFATuDWs3bVeO4Rw7Q,8064
96
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=l9HvwZdwLZXWJ3AasWWrVTTO84fgDGIGQfMRheVlE94,8686
97
+ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
98
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BX1VhAGi1qBBPkg7fJrJNupwBIPptpB3aW9ZTV65epM,226
99
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
100
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=YFFEQ_OErwD2CAYgWGIIAawQUkEZ5x0kLze_Sreiuzc,15555
101
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
102
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
103
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
104
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
105
+ snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
106
+ snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
107
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
108
+ snowflake/ml/model/_signatures/core.py,sha256=QcDdf-oBalvUeV2q87QVuvbbhaMg5HObpZ4lbc18m6Y,17874
109
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
110
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
111
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
112
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=--EZ5gxlnFy9MOVXFiCzNZPJ4BU20HwplvTG_tq-Tmo,5923
113
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
114
+ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
115
+ snowflake/ml/model/custom_model.py,sha256=8qEHi8myHcp02jcpFbG9Kqscn9YRv3QnzehCrTSI8ds,8016
116
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
117
+ snowflake/ml/model/model_signature.py,sha256=NJ5IWHUjG0oeNHeCiEfSUJ73ZLvTrztRkHLQeBwlVAM,26778
118
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
119
+ snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
120
+ snowflake/ml/model/type_hints.py,sha256=N255-eGcW_Qz3ob31HJyMl5147yV4NtPYMyAGW-kq2o,10639
121
+ snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=Q6MeR7vQMp2XuCf4eJ4LDykLQOfJL934rQaerx7ZnCE,24838
122
+ snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
123
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=L0Kdk5xxBKAFzerKfdBdral3C3XUOYWdGyYj_FcHzdY,5039
124
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=m644udYNgRL9lwCf2v35aj7BLkh9f5ZaSzNwA3jdl-U,5086
125
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
126
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=Y52I4fG0RatKRRLvMqzIYqRkrmq3CxyF61sMOqmLHsk,3165
127
+ snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
128
+ snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=KLaZ7x82UnxpCmyLQmzaw2h1mdw1UbC5d3bevhn_5lE,16165
129
+ snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=WEBHwi0-hMm49gpa6e4W5h9e3gbU43bHl970LIsw-7g,13595
130
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
131
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=zE9emcL477AZr1RLVwhZEVDvNAXt0djGLOBqgLjkqvM,44294
132
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
133
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=QSg240nBhwgNp3Sxh_eJCPPbj368LX6k6FgZbVsnCAY,42122
134
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=Anps_fQn9EVIo9Xpjpbxl_9IUhgIeO2D-W57q6LL5T0,44159
135
+ snowflake/ml/modeling/cluster/birch.py,sha256=2HSCMLMssTNJRA9DskRlFtQHcqtYrttbzcq4JhqZnOo,41847
136
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=v7DJGyMN7KN68ybEUVUBS92i_JtkxfrvfPx1kOc5bx4,44546
137
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=uspo-V4v2vCR5PblGSnZslSIHXWRYH0KUtdPPra3Wyc,42209
138
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=UZoNPdzL0SMNYaIeMxyoADGL48jVF4O2w9yYlKXFM2c,44677
139
+ snowflake/ml/modeling/cluster/k_means.py,sha256=EG4-3oA4uuDluh3trWESaIvo-pUqGXhvqTJr_dbjim4,44102
140
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=wdw2JYFqZM8KvUNMYRKLtyRocE0VrxebR1sa_Da9OSc,42419
141
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=rY5KtY5Lxr7FkdJo3TtUgaKL5toTEIK_7GYDh4D1z8I,45464
142
+ snowflake/ml/modeling/cluster/optics.py,sha256=_0hU7YGo3ZdwzkA25b2OvC4KAa0LgeBGTb9BBTNObpA,45523
143
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=7u4zb4WV0qnAIwqhrPVMiwnEw29WLfsJ4e3DPRXdAgo,42419
144
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=R4LCv1FRKNwsLWYuVVIQQzLjyC-exAC15MeuXTHtIF0,45610
145
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=BiwfX89ch6Kua4qd0YgoymyjQid_b4rtMecc8iOzdtw,41552
146
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
147
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=kQNpdYnbMXLtChCqfiam2MNaB8gjMeFohDYRxgdlca4,44118
148
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=DMi6xeGHff5mT59u1jxq4mQ8ar1RNZlSE9F82tmoGno,42106
149
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
150
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=716ejN7mJI6B_8hjBp5WAwXY2dPdg6S_7cvpOnyLJA0,42188
151
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RuXxvX5Bfxk_KnxYKxW1nAjS7xGuNQLNXAKwsb5xOXk,40252
152
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=HK9gf1IByXQTYrW_PQb5rmL3f6Qj8Ev2vpt9eozzwAc,42116
153
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=_28Qh5GQOZv91DwF9nJeQ8K8Xc-FhGbF_IezPLp_mQY,43281
154
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=g-Q1tCSp1RQ9gTzuLWBn9dx41bXUiuMseAvz1bbg-pA,40390
155
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=dT5ZQnq8inXdtYuH9GemdWp0rboigKX774FXvygeiLY,41145
156
+ snowflake/ml/modeling/covariance/oas.py,sha256=2wK0Dr2A8EEaeo6RJ03vQynmLr-H9UACuwPZkRnRRBE,40031
157
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=Ux9K6WAFAwvAOxWpPGtdEUxb5-JixdIhbsStf2m7lRk,40407
158
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
159
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=PAs0UCtHSHHu7A1A8D_hq0_Am-TTsV9nE-pgjLnYGmE,45115
160
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=LAIRDj80aLgSA9oH66fAVHREZo46CRMtUBEXAo0Twuo,42562
161
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=pAwrHoYl7EkHqTvH0iIo70xQfrgayu-Wk_30TEa0Bas,42761
162
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Ph06tVydfo-gJlal_DN43CZgDgDrrGm38BUu_Ach76U,41114
163
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=9Akp_6ycpoQjPeYQUUTKlMSRqjJj0CULXGRcFBN9O8g,45113
164
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=O_8pVVjyjxaM6Am2y03Z-LEke_sS97i3R1GQfqFeG5c,46159
165
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=AWON_Etn61XxKW1k8fp6ElrTvwb40MmcQEHeLPJhPsg,43451
166
+ snowflake/ml/modeling/decomposition/pca.py,sha256=q9nlywv_YBMxBXc5zFVrhuRcZZtHA6AwH8H6mMwXMfg,44156
167
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=nhtJqVBKxdvjduYRmSIVnnArRHULDPMUGp8Oped5Fxk,42283
168
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=Pvy9cnJ1yK3YFhtM9LH0h1vknLg7ZTDlH-K5WPyHfI4,41871
169
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
170
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ODez4RAriRtdEWKHWFLRm9ypIqQwfNeGr4N1sjBjxBk,44586
171
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=eVkmxfLkMgv-IrFKuVIGiNXfNwsGbEhnJjRtG4ZWrc4,42675
172
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
173
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=mBo5tpLdaxd9rnX9GHQkY2sKstVcjUQlIbwJNBNy2xA,43493
174
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=CeUI9-DdpHlAMwp06y9zorFnwj-SHsAj_qMvc0XumAc,42384
175
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=WE2rlUvTO_9-7EAX7LTUW82N8aDL6ZEFdnN2GzcThyw,44404
176
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=DH5VxJE2vZ9_5yagKRfreSg3Pd6YpCErmC8V3F9iq9Y,43640
177
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=0uC9hM7goZ3pJXmhqNpJpUzCl6AhKVH3GBu_34oKX1I,49324
178
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=lYJAssigF66xUIi4xu9zzi4Gr7FWtcCTt5BD912EFUk,47928
179
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=ltDiX0korOtL8NSy8cWffrmG6rOwQNYkGUHtYXhzp24,50779
180
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=_y9e3SFQPkWDb7hAHUVP_IYRjyrkW9UWmBOufs1MQtE,50372
181
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=re4VmK9yc_p6eQsMtzTUBMuvIvqgfyW2WdCnqYcYaZY,50613
182
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=YeRlNQGgp4Go_vHFEffK6pGVqBkMSC2cArJylOCnTXQ,49098
183
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=18RsumnKzh94EMcj8oz3lpyp6_GR8eqpCBACxWXOjRg,43328
184
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=AZHezpegfTBwN01I1EMBf-jjViahj3DQhNxWilcYJX4,49307
185
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=Pls_ESIGSt5qS47TRb5rsDqBBu1fUu2Q1ampcO8s8tg,47899
186
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=HcEhAX895Bb1iDAWk1tAcU90uKy_r1T5fxZPPKoTqC0,43337
187
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=7EM-m0ob6LepNoKPEzBLsJ7n5qtCqQE6I34syO2D0NU,42908
188
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=IoA-d6eRejfuiyyotNROivbrff_yoLP0q98MZjiM56M,41437
189
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
190
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=32SKh-4goj-7-v5h7lH9eHLef76JRQF7abJ9nHw5Ghg,40748
191
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=SMCmQ20R_gtRN-H0v_nGCsOavdBVlKjPSs91Ycjg2aY,40391
192
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=XdKc21FFiNhYK-1PjQuHo6Qu34TIsVk1O2TWNQ99xYE,40385
193
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9UTA0e9wR2Eo9QWsyXPnvY8XtYzaO__FDuU3tPcLUIM,40393
194
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=KZxYrjbHJtR6nz7XK_4h26pxq0ve6yFV2XcEg0nMv5o,40478
195
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=MiNh1yd-7dYGPhvWyuFQucKhAWT8brNt_I5gh65Qips,40518
196
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=zzq_5tFkir01KHDix27XGSe3WWi7BDVN-t55ats7nuk,43111
197
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=9zhfhg9Fbm9TeM_tpll_UBuD_g6ahuOz-cmMuS-gnCw,40071
198
+ snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
199
+ snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
200
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
201
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=Re3amZ7458E0yfRA0qaf44XhtSjUw80R00dIl3l4UT0,46045
202
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=k0YsT7zAkhveQH0sdRZkxFHwLxH9EVMgLE3vzszCB9s,45110
203
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
204
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=n9ee5w70HGU-i0XsAvx4nqv-lxea7JPFqcQZANPinBI,46608
205
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=tyfez7cIxb3B2dOSZW4Etqck13yQvwPHDbR1AZKEz8I,42365
206
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=mNRrplRKe8mVs-U-5hxJGvWG7gR4edg5X96W16EasyQ,41193
207
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
208
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
209
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=slSYL4YDq2TUkUo1HAlXlgd6ynLbTJsBYEpiDq1voM0,40184
210
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=q_K17n3nP1eMMvhDfhfFDkV4CzB7i25-1ZhUYzbm6tg,41988
211
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=cWLY1nZDUWq9OfZcn4CHp5BGICevfEepPV9h_UZgA98,41197
212
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=uZWIMRm8WNBLnvsafKb38nhP_vcNGSfbg_baDqs1z0w,40584
213
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=C_P-8MIRQUcsEMwvuinHB7jGDD2K6Ln6YdB5NKelWUU,40611
214
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
215
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=Nn4iK8HXRlbScqh1fU3T-S_xKSjhetw8TroBnVMDEd4,42424
216
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
217
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=Z23y4nbfZloEN2Yjk7LMPYi1sS5bwfnIXzITGNhAhJE,41926
218
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=eLnPH1-DlFF9N3N6Td8Lh8zbSgpyqwy1g5Dhwp40Hgg,41429
219
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=r-SwQq12WPfHsg3RcDW1plpfGxKc_s6gt_0Us86Bp5Y,42369
221
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=8K6-8LVHKL4zmbWlI-f1LbTEZFeV_ZnazghFamTa0rg,42785
222
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=ZUkDSYq4MRwpRd3KGP5FsdLa9HgUcMql5IYMUubT_Qg,43357
223
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=xb7zWB9vMrfzFbzo6k-Omw4608UaSxjCEBOgo_DkfAw,44625
224
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=o1scZw-CCcH6kTB8vbFt-qWWdUWuemyMSNJoRiTKk6M,42437
225
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=LZwLkxxHn_htLbH0s7qFFsIN0oz2CVyUpCr6O2OZvvM,41634
226
+ snowflake/ml/modeling/linear_model/lars.py,sha256=k0dvEVeTEzVNMHhyAsz1nBPjcAQkucdrxuJCJsEejLc,42857
227
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Eh-IyOxbKHp2Y3f5NodRDTG3YqclD918V-olh-KgaPY,43078
228
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=JShk44B9zD4prWKyAHzppQ-GdglMJMZjSzBlS6rUvGA,42963
229
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=JbAcu-GDy-t9Za83oklbhGvXPIZ6JRypFxLrK-gTi0A,43748
230
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=NHGlww5vSA36dKofJB3D-T6RVh_isVpjrBT4UjqfgGQ,43993
231
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=1A-Sb-Ge801L4lnyeMtL6sdAEIrVGrdztMeCPM6hSH8,43954
232
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=ccC9i4b9SmuxXjDRQqMVmZu2yxyr-NyMO5M3coMJPLo,43300
233
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=UAGE29bHiU70FiroI59FWrobzpkXR1QqikJn02bg9m8,41176
234
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ODWsWUwDGwkawZdn1CW_ryagFoqMjg4ZyNpo__WCWbg,47431
235
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=BTn5681xix_mpMqieVLRhK0R1lnArg5kIxzJdVW7J30,48471
236
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=bKcdmnMeb1JV18TwTG_q_-zPYuWKQCbuQjoWD9YLVEg,42648
237
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=Nkz1EO6QzjMXrDxyrJFtRtsNu_DXu71hiuMthZ5A954,44286
238
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=3kylNKXdCafJHyh0XV5Qk0ATJ5uqCoKqPJMfYefbPRY,42196
239
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=K5sHbKvQVmlS1wClJIH8jdEl1IhTgUojaCc_D-6q8sg,43458
240
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=25020v9CMjv8_gQM7a2pc8xFgTMVnDt8gYoe-ab9e6A,41803
241
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=EMnrQ7Q8KtoEdjIRRHcquhnyeWBauv02agtv16DOnRQ,45159
242
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=KKIJlfgoCNo459WB9GcDuAmsyim2T5eo7EpC3N3C7Q0,44226
243
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=WDLSnssHoTTNx8Bku51Kec9LLcHkElVgqa2v5fUVdBw,44543
244
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=8GVb5cmCNjzN6m_AvKnmHbb8RRs21nIoqZ1AMuqQioc,42482
245
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=O_UZ1JxvFbx0wI31pNoVt-79BEw7Dtv7Dep4iQiqD88,45601
246
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=S7YB-jUvDqFjTjuCDqrMtC6NeS4iLuyKyaoBjGjd_5M,44507
247
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=TL_VEGVXJmvRjMP3UINCajblPpZvHXmGViMvUlPTTCc,44895
248
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=Fb1gwZVnqNwG8F6HG5CeircGMmhiZmr5ePUW1coKjyA,42890
249
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=UAAWugy6SNULRuK2wOHM19s9OUsWt_Ba_WrzJg5N79s,43591
250
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Uzdm5mZcKkaajvwUzXLego4eoq-hkeT0q5YpU-Xtc4A,49968
251
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=X07IzRC3E1Pe3NTcbCNgNPZzbXLIX8idh04fKJC9Ulg,44517
252
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=nz4OLjOchSWnWdc9M1KJmra3Wgl-QdVys4O0fz1ZEFg,47439
253
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=pqbHyT5C71op7sRlAc4ej6YB9je6ubhtGO5XlWZFk7s,42917
254
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=qokbrtCzEVgXcpRcz1vQxNGAneMW56UXG2cOnxftvko,43873
255
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
256
+ snowflake/ml/modeling/manifold/isomap.py,sha256=6_Z7N3uz0ZFgnOtAl8iqKKUDv6KAzto8UaJbhnFvfWg,42878
257
+ snowflake/ml/modeling/manifold/mds.py,sha256=D5hC-bzDqClGbVyMndWSnqJ8j4E9Xt4jldMNFeA4Alg,42092
258
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=cGTCYXnwFWZsgimA4yPTr9lnH_bQSTLmmi88v8Rho9Q,42916
259
+ snowflake/ml/modeling/manifold/tsne.py,sha256=HBrtrp9-HktW8nuQW-qdjxHfQ_Vmw1kLQibxYPuVMUM,45875
260
+ snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
261
+ snowflake/ml/modeling/metrics/classification.py,sha256=xvD_-4fTkR_qwGT4SPry7npbCwv03wZy0mMpPufDja8,63232
262
+ snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
263
+ snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
264
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=ga7eVXlLHscKlqQd6HccUqNKIy1_5GpWBggyN0yuGsM,13075
265
+ snowflake/ml/modeling/metrics/ranking.py,sha256=n1lK7StCE0touDN_PRUYMGH3-OPUMC4OTA9oz__rxpw,17230
266
+ snowflake/ml/modeling/metrics/regression.py,sha256=L0DdKi4eKw5t4-JcICwMPfwz2Y6MA853V17a64E9lxs,25488
267
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
268
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=TVsXXWOx5Kp1B0r9alCbzYd3OilM0PgF69oWXQ8iL2s,47406
269
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=tiA_dFW1JyuRQNHKHKrP7qDiySyyGemXQlm1YWpJDDQ,45331
270
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
271
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
272
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
273
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
274
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=z01em7_f_InUo1ErGfvQLvf9HyFM0SjbrVWXKNFQtpk,41176
275
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=mOu2my5gjR5fKcKvSi81D9MdujZKTrOUNGbhsIgbHb8,42110
276
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hi1S9TQ6BcTW4RfmBNCnK4tsd4c5QMfEuD4d0DbnfEE,41446
277
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
278
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Ng3TEuRuMXgGm1EKQXCwGk06V2nRNbhPXLgbimMJzBc,41715
279
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=kazY2H7F3nbj_IOnHz09PLuz7KQHA-44w-_IpOmv_Lk,42050
280
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=LXNpAgpMHFdCwKkKhF73zlGHy1OT0Ec4koIO4ZwFRUc,41730
281
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=alamumTY2VDL3uUZ23FxPFw3sSKiw9eKw7DwopjvgvU,40859
282
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Vhng6tCHrqQ0lFYhEOt67wC3SdH3YXym_Ly6zcbrlH4,41495
283
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
284
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Q2sMUfDkGYzMKXJytsFIDetpbbFfORSST3LVFUj0-oI,44564
285
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=NUvZYEsZoUPGK9IX0L5L6fd9-PginTGMKQAXztBCFbg,44035
286
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=94AoY4NL5U9Fg1thgNAPycSrpiWsaqGW4gfoS-33Azo,42134
287
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7gR_QkGUWjON96rtEMRDV4qOAJW4aX7n8swrolE2dVs,44713
288
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=vRgMPoHs8KxLr_X_9G_zM_4OuUSOJwCh-kpbm1VhQxQ,41053
289
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=A_QBmlmUdElXT3HFCMPguHSHCe258IoOUDZk-ECjjOM,42862
290
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=tEF8kHhzKrBodp6MnT6RipjtoHjnv_TMgeCEbyJVxcE,44242
291
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=uN2si0RooDyzkYlt4QbWuy5ssJJN4WlRBrmGEQuLIck,44977
292
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=uY6fWUjey6ICTHF6AOYxfAHtEiTr59UsDQZA38lkf18,43858
293
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=_E_B20PqUTYMnmF_0tLxz7pfLzkiqZ0n1Wmz6argviw,41109
295
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=_0D1cf0W1XpnmHjJ20Ts6T7uvxevo3QkVTKlZMsEp7o,48937
296
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=Yf-n_Z16bF5946X5RE-bxhmjJTmhRO48fkoaNA8IIKU,48206
297
+ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
298
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
299
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
300
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
301
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=jc2ZhVaW6R6SH12di4W3J8Awgb8GhDBjCQbaH4bnaqc,7111
302
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=XUCGQlitkx3Tv794D4dLKu758EHN_PU6HWPh6U-_Eko,21082
303
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=z95P3umu9L4Uk4UlAGDOkRRs5h33RPVNeCHbJ1oqjdw,7517
304
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=U_QUzDVS6W4gd_uvt5iBZUQuDu60yFRHZvpk7Vqq1kY,8880
305
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=9Pv7uEZDDFUfHfnneULZ6rPct68Wycb5t73DI2NGwWU,11223
306
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
307
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
308
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
309
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=stqufcAZPGYFLx0t3cSfuQiTcVziY8pYFnrQN1R7XWE,41268
310
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
311
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
312
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=isv5vGRekwilgoJscibAov3Uz1NP1no80rCDg0hw7aw,41952
314
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=vxPuEOjUiguMYz2zC064oC3gXNREZ4C77f7aCaLX6Yo,42301
315
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=4mucBAl6S7ecpGCicDGHIMTnHhPJZ5IAb44c-gyVvx0,44762
317
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=hJW4FgaoFnX6PJIcHTK3qSeVzku9AeO7RGqY2Vmo6Mo,43115
318
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=YsfqoORcPD8A98giKYJxyhc2ObG4WBekyWoJ7aioLWA,45074
319
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=N7GeL9eb6YXPUehKmy6l0LYZeHuBQawvOm6ha3WwC-Q,42153
320
+ snowflake/ml/modeling/svm/svc.py,sha256=bF90WlgQ1HXYTcut-0PcRKOQdFkiMf69-w8rTKBPc4w,45223
321
+ snowflake/ml/modeling/svm/svr.py,sha256=Pgyobz8tnjIqBDcJAvU2Ik-xqBFcry59pJYX34Ci2xg,42342
322
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
323
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=6vGtVQZP09qhx1YAgWWSwh4gGkJhrBBYY1QP6nlpzYw,47499
324
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=WnT9JbJCAx8jOQoa--vgop8FJ2CPCG7Z_BbNSPvVq-4,46198
325
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=8bwrrJT6JsIQ09eJAlyj1PaCmeVdLcLZVLGlNQLX5J0,46841
326
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=VPSLOU0E_6fNVqpMcZbGyrgbTvFZ4LUnfIVl7MJDEPc,45549
327
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=NC0cK7y4R90TD_j3VaT3vYmzYzyAjWEQWEDX-RF1ZrI,51211
329
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=m2lbMz_BOXKgcYGlxFSdI7HNP9QHq2sZNkg2SkCa6KE,50710
330
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=EG9hBTOnJS8qqu37XhbCWN08IGQYDn2MZKhqWRx6s1o,51387
331
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=xVVbgYwYCPfHQ_L39W86U-jhi7iK3E7rkrXPBDLiW2w,50913
332
+ snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
333
+ snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
334
+ snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
335
+ snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
336
+ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
337
+ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
338
+ snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
339
+ snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
340
+ snowflake/ml/registry/model_registry.py,sha256=xuxxHHwID2wUGVTTmw38B9qHMnTVCFs27L0xtitBfB4,89068
341
+ snowflake/ml/registry/registry.py,sha256=EhHbLXmQBfDoY5_LzFoYvTBEk22dF5aRnUojV8-AKvc,8337
342
+ snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
343
+ snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
344
+ snowflake/ml/version.py,sha256=49e6tMCffnQ3df2CnnDC2TQbUn51EfJgoPwcyHzp9Ys,16
345
+ snowflake_ml_python-1.1.2.dist-info/METADATA,sha256=Gpk7iDIXw8SZAjp1EvGoo1KqHSpHwDX3kWHTF8BjvKc,26685
346
+ snowflake_ml_python-1.1.2.dist-info/RECORD,,
347
+ snowflake_ml_python-1.1.2.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91