snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NuSVR(BaseTransformer):
57
58
  r"""Nu Support Vector Regression
58
59
  For more details on this class, see [sklearn.svm.NuSVR]
@@ -60,6 +61,51 @@ class NuSVR(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  nu: float, default=0.5
64
110
  An upper bound on the fraction of training errors and a lower bound of
65
111
  the fraction of support vectors. Should be in the interval (0, 1]. By
@@ -106,42 +152,6 @@ class NuSVR(BaseTransformer):
106
152
 
107
153
  max_iter: int, default=-1
108
154
  Hard limit on iterations within solver, or -1 for no limit.
109
-
110
- input_cols: Optional[Union[str, List[str]]]
111
- A string or list of strings representing column names that contain features.
112
- If this parameter is not specified, all columns in the input DataFrame except
113
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
114
- parameters are considered input columns.
115
-
116
- label_cols: Optional[Union[str, List[str]]]
117
- A string or list of strings representing column names that contain labels.
118
- This is a required param for estimators, as there is no way to infer these
119
- columns. If this parameter is not specified, then object is fitted without
120
- labels (like a transformer).
121
-
122
- output_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that will store the
124
- output of predict and transform operations. The length of output_cols must
125
- match the expected number of output columns from the specific estimator or
126
- transformer class used.
127
- If this parameter is not specified, output column names are derived by
128
- adding an OUTPUT_ prefix to the label column names. These inferred output
129
- column names work for estimator's predict() method, but output_cols must
130
- be set explicitly for transformers.
131
-
132
- sample_weight_col: Optional[str]
133
- A string representing the column name containing the sample weights.
134
- This argument is only required when working with weighted datasets.
135
-
136
- passthrough_cols: Optional[Union[str, List[str]]]
137
- A string or a list of strings indicating column names to be excluded from any
138
- operations (such as train, transform, or inference). These specified column(s)
139
- will remain untouched throughout the process. This option is helpful in scenarios
140
- requiring automatic input_cols inference, but need to avoid using specific
141
- columns, like index columns, during training or inference.
142
-
143
- drop_input_cols: Optional[bool], default=False
144
- If set, the response of predict(), transform() methods will not contain input columns.
145
155
  """
146
156
 
147
157
  def __init__( # type: ignore[no-untyped-def]
@@ -173,7 +183,7 @@ class NuSVR(BaseTransformer):
173
183
  self.set_passthrough_cols(passthrough_cols)
174
184
  self.set_drop_input_cols(drop_input_cols)
175
185
  self.set_sample_weight_col(sample_weight_col)
176
- deps = set(SklearnWrapperProvider().dependencies)
186
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
177
187
 
178
188
  self._deps = list(deps)
179
189
 
@@ -192,13 +202,14 @@ class NuSVR(BaseTransformer):
192
202
  args=init_args,
193
203
  klass=sklearn.svm.NuSVR
194
204
  )
195
- self._sklearn_object = sklearn.svm.NuSVR(
205
+ self._sklearn_object: Any = sklearn.svm.NuSVR(
196
206
  **cleaned_up_init_args,
197
207
  )
198
208
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
199
209
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
200
210
  self._snowpark_cols: Optional[List[str]] = self.input_cols
201
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
211
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
212
+ self._autogenerated = True
202
213
 
203
214
  def _get_rand_id(self) -> str:
204
215
  """
@@ -254,54 +265,48 @@ class NuSVR(BaseTransformer):
254
265
  self
255
266
  """
256
267
  self._infer_input_output_cols(dataset)
257
- if isinstance(dataset, pd.DataFrame):
258
- assert self._sklearn_object is not None # keep mypy happy
259
- self._sklearn_object = self._handlers.fit_pandas(
260
- dataset,
261
- self._sklearn_object,
262
- self.input_cols,
263
- self.label_cols,
264
- self.sample_weight_col
265
- )
266
- elif isinstance(dataset, DataFrame):
267
- self._fit_snowpark(dataset)
268
- else:
269
- raise TypeError(
270
- f"Unexpected dataset type: {type(dataset)}."
271
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
272
- )
268
+ if isinstance(dataset, DataFrame):
269
+ session = dataset._session
270
+ assert session is not None # keep mypy happy
271
+ # Validate that key package version in user workspace are supported in snowflake conda channel
272
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
273
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
274
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
275
+
276
+ # Specify input columns so column pruning will be enforced
277
+ selected_cols = self._get_active_columns()
278
+ if len(selected_cols) > 0:
279
+ dataset = dataset.select(selected_cols)
280
+
281
+ self._snowpark_cols = dataset.select(self.input_cols).columns
282
+
283
+ # If we are already in a stored procedure, no need to kick off another one.
284
+ if SNOWML_SPROC_ENV in os.environ:
285
+ statement_params = telemetry.get_function_usage_statement_params(
286
+ project=_PROJECT,
287
+ subproject=_SUBPROJECT,
288
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
289
+ api_calls=[Session.call],
290
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
291
+ )
292
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
293
+ pd_df.columns = dataset.columns
294
+ dataset = pd_df
295
+
296
+ model_trainer = ModelTrainerBuilder.build(
297
+ estimator=self._sklearn_object,
298
+ dataset=dataset,
299
+ input_cols=self.input_cols,
300
+ label_cols=self.label_cols,
301
+ sample_weight_col=self.sample_weight_col,
302
+ autogenerated=self._autogenerated,
303
+ subproject=_SUBPROJECT
304
+ )
305
+ self._sklearn_object = model_trainer.train()
273
306
  self._is_fitted = True
274
307
  self._get_model_signatures(dataset)
275
308
  return self
276
309
 
277
- def _fit_snowpark(self, dataset: DataFrame) -> None:
278
- session = dataset._session
279
- assert session is not None # keep mypy happy
280
- # Validate that key package version in user workspace are supported in snowflake conda channel
281
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
282
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
283
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
284
-
285
- # Specify input columns so column pruning will be enforced
286
- selected_cols = self._get_active_columns()
287
- if len(selected_cols) > 0:
288
- dataset = dataset.select(selected_cols)
289
-
290
- estimator = self._sklearn_object
291
- assert estimator is not None # Keep mypy happy
292
-
293
- self._snowpark_cols = dataset.select(self.input_cols).columns
294
-
295
- self._sklearn_object = self._handlers.fit_snowpark(
296
- dataset,
297
- session,
298
- estimator,
299
- ["snowflake-snowpark-python"] + self._get_dependencies(),
300
- self.input_cols,
301
- self.label_cols,
302
- self.sample_weight_col,
303
- )
304
-
305
310
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
306
311
  if self._drop_input_cols:
307
312
  return []
@@ -489,11 +494,6 @@ class NuSVR(BaseTransformer):
489
494
  subproject=_SUBPROJECT,
490
495
  custom_tags=dict([("autogen", True)]),
491
496
  )
492
- @telemetry.add_stmt_params_to_df(
493
- project=_PROJECT,
494
- subproject=_SUBPROJECT,
495
- custom_tags=dict([("autogen", True)]),
496
- )
497
497
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
498
498
  """Perform regression on samples in X
499
499
  For more details on this function, see [sklearn.svm.NuSVR.predict]
@@ -547,11 +547,6 @@ class NuSVR(BaseTransformer):
547
547
  subproject=_SUBPROJECT,
548
548
  custom_tags=dict([("autogen", True)]),
549
549
  )
550
- @telemetry.add_stmt_params_to_df(
551
- project=_PROJECT,
552
- subproject=_SUBPROJECT,
553
- custom_tags=dict([("autogen", True)]),
554
- )
555
550
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
556
551
  """Method not supported for this class.
557
552
 
@@ -608,7 +603,8 @@ class NuSVR(BaseTransformer):
608
603
  if False:
609
604
  self.fit(dataset)
610
605
  assert self._sklearn_object is not None
611
- return self._sklearn_object.labels_
606
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
607
+ return labels
612
608
  else:
613
609
  raise NotImplementedError
614
610
 
@@ -644,6 +640,7 @@ class NuSVR(BaseTransformer):
644
640
  output_cols = []
645
641
 
646
642
  # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
647
644
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
648
645
 
649
646
  return rv
@@ -654,11 +651,6 @@ class NuSVR(BaseTransformer):
654
651
  subproject=_SUBPROJECT,
655
652
  custom_tags=dict([("autogen", True)]),
656
653
  )
657
- @telemetry.add_stmt_params_to_df(
658
- project=_PROJECT,
659
- subproject=_SUBPROJECT,
660
- custom_tags=dict([("autogen", True)]),
661
- )
662
654
  def predict_proba(
663
655
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
664
656
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -699,11 +691,6 @@ class NuSVR(BaseTransformer):
699
691
  subproject=_SUBPROJECT,
700
692
  custom_tags=dict([("autogen", True)]),
701
693
  )
702
- @telemetry.add_stmt_params_to_df(
703
- project=_PROJECT,
704
- subproject=_SUBPROJECT,
705
- custom_tags=dict([("autogen", True)]),
706
- )
707
694
  def predict_log_proba(
708
695
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
709
696
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -740,16 +727,6 @@ class NuSVR(BaseTransformer):
740
727
  return output_df
741
728
 
742
729
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
743
- @telemetry.send_api_usage_telemetry(
744
- project=_PROJECT,
745
- subproject=_SUBPROJECT,
746
- custom_tags=dict([("autogen", True)]),
747
- )
748
- @telemetry.add_stmt_params_to_df(
749
- project=_PROJECT,
750
- subproject=_SUBPROJECT,
751
- custom_tags=dict([("autogen", True)]),
752
- )
753
730
  def decision_function(
754
731
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
755
732
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -850,11 +827,6 @@ class NuSVR(BaseTransformer):
850
827
  subproject=_SUBPROJECT,
851
828
  custom_tags=dict([("autogen", True)]),
852
829
  )
853
- @telemetry.add_stmt_params_to_df(
854
- project=_PROJECT,
855
- subproject=_SUBPROJECT,
856
- custom_tags=dict([("autogen", True)]),
857
- )
858
830
  def kneighbors(
859
831
  self,
860
832
  dataset: Union[DataFrame, pd.DataFrame],
@@ -914,9 +886,9 @@ class NuSVR(BaseTransformer):
914
886
  # For classifier, the type of predict is the same as the type of label
915
887
  if self._sklearn_object._estimator_type == 'classifier':
916
888
  # label columns is the desired type for output
917
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
889
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
918
890
  # rename the output columns
919
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
891
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
920
892
  self._model_signature_dict["predict"] = ModelSignature(inputs,
921
893
  ([] if self._drop_input_cols else inputs)
922
894
  + outputs)