snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NuSVR(BaseTransformer):
|
57
58
|
r"""Nu Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.NuSVR]
|
@@ -60,6 +61,51 @@ class NuSVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
nu: float, default=0.5
|
64
110
|
An upper bound on the fraction of training errors and a lower bound of
|
65
111
|
the fraction of support vectors. Should be in the interval (0, 1]. By
|
@@ -106,42 +152,6 @@ class NuSVR(BaseTransformer):
|
|
106
152
|
|
107
153
|
max_iter: int, default=-1
|
108
154
|
Hard limit on iterations within solver, or -1 for no limit.
|
109
|
-
|
110
|
-
input_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain features.
|
112
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
113
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
114
|
-
parameters are considered input columns.
|
115
|
-
|
116
|
-
label_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that contain labels.
|
118
|
-
This is a required param for estimators, as there is no way to infer these
|
119
|
-
columns. If this parameter is not specified, then object is fitted without
|
120
|
-
labels (like a transformer).
|
121
|
-
|
122
|
-
output_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that will store the
|
124
|
-
output of predict and transform operations. The length of output_cols must
|
125
|
-
match the expected number of output columns from the specific estimator or
|
126
|
-
transformer class used.
|
127
|
-
If this parameter is not specified, output column names are derived by
|
128
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
129
|
-
column names work for estimator's predict() method, but output_cols must
|
130
|
-
be set explicitly for transformers.
|
131
|
-
|
132
|
-
sample_weight_col: Optional[str]
|
133
|
-
A string representing the column name containing the sample weights.
|
134
|
-
This argument is only required when working with weighted datasets.
|
135
|
-
|
136
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or a list of strings indicating column names to be excluded from any
|
138
|
-
operations (such as train, transform, or inference). These specified column(s)
|
139
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
140
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
141
|
-
columns, like index columns, during training or inference.
|
142
|
-
|
143
|
-
drop_input_cols: Optional[bool], default=False
|
144
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
145
155
|
"""
|
146
156
|
|
147
157
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -173,7 +183,7 @@ class NuSVR(BaseTransformer):
|
|
173
183
|
self.set_passthrough_cols(passthrough_cols)
|
174
184
|
self.set_drop_input_cols(drop_input_cols)
|
175
185
|
self.set_sample_weight_col(sample_weight_col)
|
176
|
-
deps = set(
|
186
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
177
187
|
|
178
188
|
self._deps = list(deps)
|
179
189
|
|
@@ -192,13 +202,14 @@ class NuSVR(BaseTransformer):
|
|
192
202
|
args=init_args,
|
193
203
|
klass=sklearn.svm.NuSVR
|
194
204
|
)
|
195
|
-
self._sklearn_object = sklearn.svm.NuSVR(
|
205
|
+
self._sklearn_object: Any = sklearn.svm.NuSVR(
|
196
206
|
**cleaned_up_init_args,
|
197
207
|
)
|
198
208
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
199
209
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
200
210
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
201
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
211
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
212
|
+
self._autogenerated = True
|
202
213
|
|
203
214
|
def _get_rand_id(self) -> str:
|
204
215
|
"""
|
@@ -254,54 +265,48 @@ class NuSVR(BaseTransformer):
|
|
254
265
|
self
|
255
266
|
"""
|
256
267
|
self._infer_input_output_cols(dataset)
|
257
|
-
if isinstance(dataset,
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
self.
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
268
|
+
if isinstance(dataset, DataFrame):
|
269
|
+
session = dataset._session
|
270
|
+
assert session is not None # keep mypy happy
|
271
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
272
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
273
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
274
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
275
|
+
|
276
|
+
# Specify input columns so column pruning will be enforced
|
277
|
+
selected_cols = self._get_active_columns()
|
278
|
+
if len(selected_cols) > 0:
|
279
|
+
dataset = dataset.select(selected_cols)
|
280
|
+
|
281
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
282
|
+
|
283
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
284
|
+
if SNOWML_SPROC_ENV in os.environ:
|
285
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
286
|
+
project=_PROJECT,
|
287
|
+
subproject=_SUBPROJECT,
|
288
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
|
289
|
+
api_calls=[Session.call],
|
290
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
291
|
+
)
|
292
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
293
|
+
pd_df.columns = dataset.columns
|
294
|
+
dataset = pd_df
|
295
|
+
|
296
|
+
model_trainer = ModelTrainerBuilder.build(
|
297
|
+
estimator=self._sklearn_object,
|
298
|
+
dataset=dataset,
|
299
|
+
input_cols=self.input_cols,
|
300
|
+
label_cols=self.label_cols,
|
301
|
+
sample_weight_col=self.sample_weight_col,
|
302
|
+
autogenerated=self._autogenerated,
|
303
|
+
subproject=_SUBPROJECT
|
304
|
+
)
|
305
|
+
self._sklearn_object = model_trainer.train()
|
273
306
|
self._is_fitted = True
|
274
307
|
self._get_model_signatures(dataset)
|
275
308
|
return self
|
276
309
|
|
277
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
278
|
-
session = dataset._session
|
279
|
-
assert session is not None # keep mypy happy
|
280
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
281
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
282
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
283
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
284
|
-
|
285
|
-
# Specify input columns so column pruning will be enforced
|
286
|
-
selected_cols = self._get_active_columns()
|
287
|
-
if len(selected_cols) > 0:
|
288
|
-
dataset = dataset.select(selected_cols)
|
289
|
-
|
290
|
-
estimator = self._sklearn_object
|
291
|
-
assert estimator is not None # Keep mypy happy
|
292
|
-
|
293
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
294
|
-
|
295
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
296
|
-
dataset,
|
297
|
-
session,
|
298
|
-
estimator,
|
299
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
300
|
-
self.input_cols,
|
301
|
-
self.label_cols,
|
302
|
-
self.sample_weight_col,
|
303
|
-
)
|
304
|
-
|
305
310
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
306
311
|
if self._drop_input_cols:
|
307
312
|
return []
|
@@ -489,11 +494,6 @@ class NuSVR(BaseTransformer):
|
|
489
494
|
subproject=_SUBPROJECT,
|
490
495
|
custom_tags=dict([("autogen", True)]),
|
491
496
|
)
|
492
|
-
@telemetry.add_stmt_params_to_df(
|
493
|
-
project=_PROJECT,
|
494
|
-
subproject=_SUBPROJECT,
|
495
|
-
custom_tags=dict([("autogen", True)]),
|
496
|
-
)
|
497
497
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
498
498
|
"""Perform regression on samples in X
|
499
499
|
For more details on this function, see [sklearn.svm.NuSVR.predict]
|
@@ -547,11 +547,6 @@ class NuSVR(BaseTransformer):
|
|
547
547
|
subproject=_SUBPROJECT,
|
548
548
|
custom_tags=dict([("autogen", True)]),
|
549
549
|
)
|
550
|
-
@telemetry.add_stmt_params_to_df(
|
551
|
-
project=_PROJECT,
|
552
|
-
subproject=_SUBPROJECT,
|
553
|
-
custom_tags=dict([("autogen", True)]),
|
554
|
-
)
|
555
550
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
556
551
|
"""Method not supported for this class.
|
557
552
|
|
@@ -608,7 +603,8 @@ class NuSVR(BaseTransformer):
|
|
608
603
|
if False:
|
609
604
|
self.fit(dataset)
|
610
605
|
assert self._sklearn_object is not None
|
611
|
-
|
606
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
607
|
+
return labels
|
612
608
|
else:
|
613
609
|
raise NotImplementedError
|
614
610
|
|
@@ -644,6 +640,7 @@ class NuSVR(BaseTransformer):
|
|
644
640
|
output_cols = []
|
645
641
|
|
646
642
|
# Make sure column names are valid snowflake identifiers.
|
643
|
+
assert output_cols is not None # Make MyPy happy
|
647
644
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
648
645
|
|
649
646
|
return rv
|
@@ -654,11 +651,6 @@ class NuSVR(BaseTransformer):
|
|
654
651
|
subproject=_SUBPROJECT,
|
655
652
|
custom_tags=dict([("autogen", True)]),
|
656
653
|
)
|
657
|
-
@telemetry.add_stmt_params_to_df(
|
658
|
-
project=_PROJECT,
|
659
|
-
subproject=_SUBPROJECT,
|
660
|
-
custom_tags=dict([("autogen", True)]),
|
661
|
-
)
|
662
654
|
def predict_proba(
|
663
655
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
664
656
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -699,11 +691,6 @@ class NuSVR(BaseTransformer):
|
|
699
691
|
subproject=_SUBPROJECT,
|
700
692
|
custom_tags=dict([("autogen", True)]),
|
701
693
|
)
|
702
|
-
@telemetry.add_stmt_params_to_df(
|
703
|
-
project=_PROJECT,
|
704
|
-
subproject=_SUBPROJECT,
|
705
|
-
custom_tags=dict([("autogen", True)]),
|
706
|
-
)
|
707
694
|
def predict_log_proba(
|
708
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
709
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -740,16 +727,6 @@ class NuSVR(BaseTransformer):
|
|
740
727
|
return output_df
|
741
728
|
|
742
729
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
743
|
-
@telemetry.send_api_usage_telemetry(
|
744
|
-
project=_PROJECT,
|
745
|
-
subproject=_SUBPROJECT,
|
746
|
-
custom_tags=dict([("autogen", True)]),
|
747
|
-
)
|
748
|
-
@telemetry.add_stmt_params_to_df(
|
749
|
-
project=_PROJECT,
|
750
|
-
subproject=_SUBPROJECT,
|
751
|
-
custom_tags=dict([("autogen", True)]),
|
752
|
-
)
|
753
730
|
def decision_function(
|
754
731
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
755
732
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -850,11 +827,6 @@ class NuSVR(BaseTransformer):
|
|
850
827
|
subproject=_SUBPROJECT,
|
851
828
|
custom_tags=dict([("autogen", True)]),
|
852
829
|
)
|
853
|
-
@telemetry.add_stmt_params_to_df(
|
854
|
-
project=_PROJECT,
|
855
|
-
subproject=_SUBPROJECT,
|
856
|
-
custom_tags=dict([("autogen", True)]),
|
857
|
-
)
|
858
830
|
def kneighbors(
|
859
831
|
self,
|
860
832
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -914,9 +886,9 @@ class NuSVR(BaseTransformer):
|
|
914
886
|
# For classifier, the type of predict is the same as the type of label
|
915
887
|
if self._sklearn_object._estimator_type == 'classifier':
|
916
888
|
# label columns is the desired type for output
|
917
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
889
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
918
890
|
# rename the output columns
|
919
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
891
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
920
892
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
921
893
|
([] if self._drop_input_cols else inputs)
|
922
894
|
+ outputs)
|