snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RidgeClassifier(BaseTransformer):
|
57
58
|
r"""Classifier using Ridge regression
|
58
59
|
For more details on this class, see [sklearn.linear_model.RidgeClassifier]
|
@@ -60,6 +61,51 @@ class RidgeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Regularization strength; must be a positive float. Regularization
|
65
111
|
improves the conditioning of the problem and reduces the variance of
|
@@ -147,42 +193,6 @@ class RidgeClassifier(BaseTransformer):
|
|
147
193
|
random_state: int, RandomState instance, default=None
|
148
194
|
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
|
149
195
|
See :term:`Glossary <random_state>` for details.
|
150
|
-
|
151
|
-
input_cols: Optional[Union[str, List[str]]]
|
152
|
-
A string or list of strings representing column names that contain features.
|
153
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
154
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
155
|
-
parameters are considered input columns.
|
156
|
-
|
157
|
-
label_cols: Optional[Union[str, List[str]]]
|
158
|
-
A string or list of strings representing column names that contain labels.
|
159
|
-
This is a required param for estimators, as there is no way to infer these
|
160
|
-
columns. If this parameter is not specified, then object is fitted without
|
161
|
-
labels (like a transformer).
|
162
|
-
|
163
|
-
output_cols: Optional[Union[str, List[str]]]
|
164
|
-
A string or list of strings representing column names that will store the
|
165
|
-
output of predict and transform operations. The length of output_cols must
|
166
|
-
match the expected number of output columns from the specific estimator or
|
167
|
-
transformer class used.
|
168
|
-
If this parameter is not specified, output column names are derived by
|
169
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
170
|
-
column names work for estimator's predict() method, but output_cols must
|
171
|
-
be set explicitly for transformers.
|
172
|
-
|
173
|
-
sample_weight_col: Optional[str]
|
174
|
-
A string representing the column name containing the sample weights.
|
175
|
-
This argument is only required when working with weighted datasets.
|
176
|
-
|
177
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
178
|
-
A string or a list of strings indicating column names to be excluded from any
|
179
|
-
operations (such as train, transform, or inference). These specified column(s)
|
180
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
181
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
182
|
-
columns, like index columns, during training or inference.
|
183
|
-
|
184
|
-
drop_input_cols: Optional[bool], default=False
|
185
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
186
196
|
"""
|
187
197
|
|
188
198
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -212,7 +222,7 @@ class RidgeClassifier(BaseTransformer):
|
|
212
222
|
self.set_passthrough_cols(passthrough_cols)
|
213
223
|
self.set_drop_input_cols(drop_input_cols)
|
214
224
|
self.set_sample_weight_col(sample_weight_col)
|
215
|
-
deps = set(
|
225
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
216
226
|
|
217
227
|
self._deps = list(deps)
|
218
228
|
|
@@ -229,13 +239,14 @@ class RidgeClassifier(BaseTransformer):
|
|
229
239
|
args=init_args,
|
230
240
|
klass=sklearn.linear_model.RidgeClassifier
|
231
241
|
)
|
232
|
-
self._sklearn_object = sklearn.linear_model.RidgeClassifier(
|
242
|
+
self._sklearn_object: Any = sklearn.linear_model.RidgeClassifier(
|
233
243
|
**cleaned_up_init_args,
|
234
244
|
)
|
235
245
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
236
246
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
237
247
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
238
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
248
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
249
|
+
self._autogenerated = True
|
239
250
|
|
240
251
|
def _get_rand_id(self) -> str:
|
241
252
|
"""
|
@@ -291,54 +302,48 @@ class RidgeClassifier(BaseTransformer):
|
|
291
302
|
self
|
292
303
|
"""
|
293
304
|
self._infer_input_output_cols(dataset)
|
294
|
-
if isinstance(dataset,
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
self.
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
305
|
+
if isinstance(dataset, DataFrame):
|
306
|
+
session = dataset._session
|
307
|
+
assert session is not None # keep mypy happy
|
308
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
+
|
313
|
+
# Specify input columns so column pruning will be enforced
|
314
|
+
selected_cols = self._get_active_columns()
|
315
|
+
if len(selected_cols) > 0:
|
316
|
+
dataset = dataset.select(selected_cols)
|
317
|
+
|
318
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
319
|
+
|
320
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
321
|
+
if SNOWML_SPROC_ENV in os.environ:
|
322
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
323
|
+
project=_PROJECT,
|
324
|
+
subproject=_SUBPROJECT,
|
325
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifier.__class__.__name__),
|
326
|
+
api_calls=[Session.call],
|
327
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
328
|
+
)
|
329
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
330
|
+
pd_df.columns = dataset.columns
|
331
|
+
dataset = pd_df
|
332
|
+
|
333
|
+
model_trainer = ModelTrainerBuilder.build(
|
334
|
+
estimator=self._sklearn_object,
|
335
|
+
dataset=dataset,
|
336
|
+
input_cols=self.input_cols,
|
337
|
+
label_cols=self.label_cols,
|
338
|
+
sample_weight_col=self.sample_weight_col,
|
339
|
+
autogenerated=self._autogenerated,
|
340
|
+
subproject=_SUBPROJECT
|
341
|
+
)
|
342
|
+
self._sklearn_object = model_trainer.train()
|
310
343
|
self._is_fitted = True
|
311
344
|
self._get_model_signatures(dataset)
|
312
345
|
return self
|
313
346
|
|
314
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
315
|
-
session = dataset._session
|
316
|
-
assert session is not None # keep mypy happy
|
317
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
318
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
319
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
320
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
321
|
-
|
322
|
-
# Specify input columns so column pruning will be enforced
|
323
|
-
selected_cols = self._get_active_columns()
|
324
|
-
if len(selected_cols) > 0:
|
325
|
-
dataset = dataset.select(selected_cols)
|
326
|
-
|
327
|
-
estimator = self._sklearn_object
|
328
|
-
assert estimator is not None # Keep mypy happy
|
329
|
-
|
330
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
331
|
-
|
332
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
333
|
-
dataset,
|
334
|
-
session,
|
335
|
-
estimator,
|
336
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
337
|
-
self.input_cols,
|
338
|
-
self.label_cols,
|
339
|
-
self.sample_weight_col,
|
340
|
-
)
|
341
|
-
|
342
347
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
343
348
|
if self._drop_input_cols:
|
344
349
|
return []
|
@@ -526,11 +531,6 @@ class RidgeClassifier(BaseTransformer):
|
|
526
531
|
subproject=_SUBPROJECT,
|
527
532
|
custom_tags=dict([("autogen", True)]),
|
528
533
|
)
|
529
|
-
@telemetry.add_stmt_params_to_df(
|
530
|
-
project=_PROJECT,
|
531
|
-
subproject=_SUBPROJECT,
|
532
|
-
custom_tags=dict([("autogen", True)]),
|
533
|
-
)
|
534
534
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
535
535
|
"""Predict class labels for samples in `X`
|
536
536
|
For more details on this function, see [sklearn.linear_model.RidgeClassifier.predict]
|
@@ -584,11 +584,6 @@ class RidgeClassifier(BaseTransformer):
|
|
584
584
|
subproject=_SUBPROJECT,
|
585
585
|
custom_tags=dict([("autogen", True)]),
|
586
586
|
)
|
587
|
-
@telemetry.add_stmt_params_to_df(
|
588
|
-
project=_PROJECT,
|
589
|
-
subproject=_SUBPROJECT,
|
590
|
-
custom_tags=dict([("autogen", True)]),
|
591
|
-
)
|
592
587
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
593
588
|
"""Method not supported for this class.
|
594
589
|
|
@@ -645,7 +640,8 @@ class RidgeClassifier(BaseTransformer):
|
|
645
640
|
if False:
|
646
641
|
self.fit(dataset)
|
647
642
|
assert self._sklearn_object is not None
|
648
|
-
|
643
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
644
|
+
return labels
|
649
645
|
else:
|
650
646
|
raise NotImplementedError
|
651
647
|
|
@@ -681,6 +677,7 @@ class RidgeClassifier(BaseTransformer):
|
|
681
677
|
output_cols = []
|
682
678
|
|
683
679
|
# Make sure column names are valid snowflake identifiers.
|
680
|
+
assert output_cols is not None # Make MyPy happy
|
684
681
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
685
682
|
|
686
683
|
return rv
|
@@ -691,11 +688,6 @@ class RidgeClassifier(BaseTransformer):
|
|
691
688
|
subproject=_SUBPROJECT,
|
692
689
|
custom_tags=dict([("autogen", True)]),
|
693
690
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
691
|
def predict_proba(
|
700
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
701
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -736,11 +728,6 @@ class RidgeClassifier(BaseTransformer):
|
|
736
728
|
subproject=_SUBPROJECT,
|
737
729
|
custom_tags=dict([("autogen", True)]),
|
738
730
|
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
731
|
def predict_log_proba(
|
745
732
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
746
733
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -777,16 +764,6 @@ class RidgeClassifier(BaseTransformer):
|
|
777
764
|
return output_df
|
778
765
|
|
779
766
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
780
|
-
@telemetry.send_api_usage_telemetry(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
767
|
def decision_function(
|
791
768
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
792
769
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,11 +866,6 @@ class RidgeClassifier(BaseTransformer):
|
|
889
866
|
subproject=_SUBPROJECT,
|
890
867
|
custom_tags=dict([("autogen", True)]),
|
891
868
|
)
|
892
|
-
@telemetry.add_stmt_params_to_df(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
869
|
def kneighbors(
|
898
870
|
self,
|
899
871
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -953,9 +925,9 @@ class RidgeClassifier(BaseTransformer):
|
|
953
925
|
# For classifier, the type of predict is the same as the type of label
|
954
926
|
if self._sklearn_object._estimator_type == 'classifier':
|
955
927
|
# label columns is the desired type for output
|
956
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
928
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
957
929
|
# rename the output columns
|
958
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
930
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
959
931
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
960
932
|
([] if self._drop_input_cols else inputs)
|
961
933
|
+ outputs)
|