snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class HistGradientBoostingRegressor(BaseTransformer):
|
57
58
|
r"""Histogram-based Gradient Boosting Regression Tree
|
58
59
|
For more details on this class, see [sklearn.ensemble.HistGradientBoostingRegressor]
|
@@ -60,6 +61,51 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'}, default='squared_error'
|
64
110
|
The loss function to use in the boosting process. Note that the
|
65
111
|
"squared error", "gamma" and "poisson" losses actually implement
|
@@ -191,42 +237,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
191
237
|
is enabled.
|
192
238
|
Pass an int for reproducible output across multiple function calls.
|
193
239
|
See :term:`Glossary <random_state>`.
|
194
|
-
|
195
|
-
input_cols: Optional[Union[str, List[str]]]
|
196
|
-
A string or list of strings representing column names that contain features.
|
197
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
198
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
199
|
-
parameters are considered input columns.
|
200
|
-
|
201
|
-
label_cols: Optional[Union[str, List[str]]]
|
202
|
-
A string or list of strings representing column names that contain labels.
|
203
|
-
This is a required param for estimators, as there is no way to infer these
|
204
|
-
columns. If this parameter is not specified, then object is fitted without
|
205
|
-
labels (like a transformer).
|
206
|
-
|
207
|
-
output_cols: Optional[Union[str, List[str]]]
|
208
|
-
A string or list of strings representing column names that will store the
|
209
|
-
output of predict and transform operations. The length of output_cols must
|
210
|
-
match the expected number of output columns from the specific estimator or
|
211
|
-
transformer class used.
|
212
|
-
If this parameter is not specified, output column names are derived by
|
213
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
214
|
-
column names work for estimator's predict() method, but output_cols must
|
215
|
-
be set explicitly for transformers.
|
216
|
-
|
217
|
-
sample_weight_col: Optional[str]
|
218
|
-
A string representing the column name containing the sample weights.
|
219
|
-
This argument is only required when working with weighted datasets.
|
220
|
-
|
221
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
222
|
-
A string or a list of strings indicating column names to be excluded from any
|
223
|
-
operations (such as train, transform, or inference). These specified column(s)
|
224
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
225
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
226
|
-
columns, like index columns, during training or inference.
|
227
|
-
|
228
|
-
drop_input_cols: Optional[bool], default=False
|
229
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
230
240
|
"""
|
231
241
|
|
232
242
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -267,7 +277,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
267
277
|
self.set_passthrough_cols(passthrough_cols)
|
268
278
|
self.set_drop_input_cols(drop_input_cols)
|
269
279
|
self.set_sample_weight_col(sample_weight_col)
|
270
|
-
deps = set(
|
280
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
271
281
|
|
272
282
|
self._deps = list(deps)
|
273
283
|
|
@@ -295,13 +305,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
295
305
|
args=init_args,
|
296
306
|
klass=sklearn.ensemble.HistGradientBoostingRegressor
|
297
307
|
)
|
298
|
-
self._sklearn_object = sklearn.ensemble.HistGradientBoostingRegressor(
|
308
|
+
self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingRegressor(
|
299
309
|
**cleaned_up_init_args,
|
300
310
|
)
|
301
311
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
302
312
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
303
313
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
304
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
314
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
315
|
+
self._autogenerated = True
|
305
316
|
|
306
317
|
def _get_rand_id(self) -> str:
|
307
318
|
"""
|
@@ -357,54 +368,48 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
357
368
|
self
|
358
369
|
"""
|
359
370
|
self._infer_input_output_cols(dataset)
|
360
|
-
if isinstance(dataset,
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
self.
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
371
|
+
if isinstance(dataset, DataFrame):
|
372
|
+
session = dataset._session
|
373
|
+
assert session is not None # keep mypy happy
|
374
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
375
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
376
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
377
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
378
|
+
|
379
|
+
# Specify input columns so column pruning will be enforced
|
380
|
+
selected_cols = self._get_active_columns()
|
381
|
+
if len(selected_cols) > 0:
|
382
|
+
dataset = dataset.select(selected_cols)
|
383
|
+
|
384
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
385
|
+
|
386
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
387
|
+
if SNOWML_SPROC_ENV in os.environ:
|
388
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
389
|
+
project=_PROJECT,
|
390
|
+
subproject=_SUBPROJECT,
|
391
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
|
392
|
+
api_calls=[Session.call],
|
393
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
394
|
+
)
|
395
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
396
|
+
pd_df.columns = dataset.columns
|
397
|
+
dataset = pd_df
|
398
|
+
|
399
|
+
model_trainer = ModelTrainerBuilder.build(
|
400
|
+
estimator=self._sklearn_object,
|
401
|
+
dataset=dataset,
|
402
|
+
input_cols=self.input_cols,
|
403
|
+
label_cols=self.label_cols,
|
404
|
+
sample_weight_col=self.sample_weight_col,
|
405
|
+
autogenerated=self._autogenerated,
|
406
|
+
subproject=_SUBPROJECT
|
407
|
+
)
|
408
|
+
self._sklearn_object = model_trainer.train()
|
376
409
|
self._is_fitted = True
|
377
410
|
self._get_model_signatures(dataset)
|
378
411
|
return self
|
379
412
|
|
380
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
381
|
-
session = dataset._session
|
382
|
-
assert session is not None # keep mypy happy
|
383
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
384
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
385
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
386
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
387
|
-
|
388
|
-
# Specify input columns so column pruning will be enforced
|
389
|
-
selected_cols = self._get_active_columns()
|
390
|
-
if len(selected_cols) > 0:
|
391
|
-
dataset = dataset.select(selected_cols)
|
392
|
-
|
393
|
-
estimator = self._sklearn_object
|
394
|
-
assert estimator is not None # Keep mypy happy
|
395
|
-
|
396
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
397
|
-
|
398
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
399
|
-
dataset,
|
400
|
-
session,
|
401
|
-
estimator,
|
402
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
403
|
-
self.input_cols,
|
404
|
-
self.label_cols,
|
405
|
-
self.sample_weight_col,
|
406
|
-
)
|
407
|
-
|
408
413
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
409
414
|
if self._drop_input_cols:
|
410
415
|
return []
|
@@ -592,11 +597,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
592
597
|
subproject=_SUBPROJECT,
|
593
598
|
custom_tags=dict([("autogen", True)]),
|
594
599
|
)
|
595
|
-
@telemetry.add_stmt_params_to_df(
|
596
|
-
project=_PROJECT,
|
597
|
-
subproject=_SUBPROJECT,
|
598
|
-
custom_tags=dict([("autogen", True)]),
|
599
|
-
)
|
600
600
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
601
601
|
"""Predict values for X
|
602
602
|
For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.predict]
|
@@ -650,11 +650,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
650
650
|
subproject=_SUBPROJECT,
|
651
651
|
custom_tags=dict([("autogen", True)]),
|
652
652
|
)
|
653
|
-
@telemetry.add_stmt_params_to_df(
|
654
|
-
project=_PROJECT,
|
655
|
-
subproject=_SUBPROJECT,
|
656
|
-
custom_tags=dict([("autogen", True)]),
|
657
|
-
)
|
658
653
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
659
654
|
"""Method not supported for this class.
|
660
655
|
|
@@ -711,7 +706,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
711
706
|
if False:
|
712
707
|
self.fit(dataset)
|
713
708
|
assert self._sklearn_object is not None
|
714
|
-
|
709
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
710
|
+
return labels
|
715
711
|
else:
|
716
712
|
raise NotImplementedError
|
717
713
|
|
@@ -747,6 +743,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
747
743
|
output_cols = []
|
748
744
|
|
749
745
|
# Make sure column names are valid snowflake identifiers.
|
746
|
+
assert output_cols is not None # Make MyPy happy
|
750
747
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
751
748
|
|
752
749
|
return rv
|
@@ -757,11 +754,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
757
754
|
subproject=_SUBPROJECT,
|
758
755
|
custom_tags=dict([("autogen", True)]),
|
759
756
|
)
|
760
|
-
@telemetry.add_stmt_params_to_df(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
757
|
def predict_proba(
|
766
758
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
767
759
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -802,11 +794,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
802
794
|
subproject=_SUBPROJECT,
|
803
795
|
custom_tags=dict([("autogen", True)]),
|
804
796
|
)
|
805
|
-
@telemetry.add_stmt_params_to_df(
|
806
|
-
project=_PROJECT,
|
807
|
-
subproject=_SUBPROJECT,
|
808
|
-
custom_tags=dict([("autogen", True)]),
|
809
|
-
)
|
810
797
|
def predict_log_proba(
|
811
798
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
812
799
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,16 +830,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
843
830
|
return output_df
|
844
831
|
|
845
832
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
846
|
-
@telemetry.send_api_usage_telemetry(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
833
|
def decision_function(
|
857
834
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
858
835
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -953,11 +930,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
953
930
|
subproject=_SUBPROJECT,
|
954
931
|
custom_tags=dict([("autogen", True)]),
|
955
932
|
)
|
956
|
-
@telemetry.add_stmt_params_to_df(
|
957
|
-
project=_PROJECT,
|
958
|
-
subproject=_SUBPROJECT,
|
959
|
-
custom_tags=dict([("autogen", True)]),
|
960
|
-
)
|
961
933
|
def kneighbors(
|
962
934
|
self,
|
963
935
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1017,9 +989,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
1017
989
|
# For classifier, the type of predict is the same as the type of label
|
1018
990
|
if self._sklearn_object._estimator_type == 'classifier':
|
1019
991
|
# label columns is the desired type for output
|
1020
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
992
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1021
993
|
# rename the output columns
|
1022
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
994
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1023
995
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1024
996
|
([] if self._drop_input_cols else inputs)
|
1025
997
|
+ outputs)
|