snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HistGradientBoostingRegressor(BaseTransformer):
57
58
  r"""Histogram-based Gradient Boosting Regression Tree
58
59
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingRegressor]
@@ -60,6 +61,51 @@ class HistGradientBoostingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'}, default='squared_error'
64
110
  The loss function to use in the boosting process. Note that the
65
111
  "squared error", "gamma" and "poisson" losses actually implement
@@ -191,42 +237,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
191
237
  is enabled.
192
238
  Pass an int for reproducible output across multiple function calls.
193
239
  See :term:`Glossary <random_state>`.
194
-
195
- input_cols: Optional[Union[str, List[str]]]
196
- A string or list of strings representing column names that contain features.
197
- If this parameter is not specified, all columns in the input DataFrame except
198
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
199
- parameters are considered input columns.
200
-
201
- label_cols: Optional[Union[str, List[str]]]
202
- A string or list of strings representing column names that contain labels.
203
- This is a required param for estimators, as there is no way to infer these
204
- columns. If this parameter is not specified, then object is fitted without
205
- labels (like a transformer).
206
-
207
- output_cols: Optional[Union[str, List[str]]]
208
- A string or list of strings representing column names that will store the
209
- output of predict and transform operations. The length of output_cols must
210
- match the expected number of output columns from the specific estimator or
211
- transformer class used.
212
- If this parameter is not specified, output column names are derived by
213
- adding an OUTPUT_ prefix to the label column names. These inferred output
214
- column names work for estimator's predict() method, but output_cols must
215
- be set explicitly for transformers.
216
-
217
- sample_weight_col: Optional[str]
218
- A string representing the column name containing the sample weights.
219
- This argument is only required when working with weighted datasets.
220
-
221
- passthrough_cols: Optional[Union[str, List[str]]]
222
- A string or a list of strings indicating column names to be excluded from any
223
- operations (such as train, transform, or inference). These specified column(s)
224
- will remain untouched throughout the process. This option is helpful in scenarios
225
- requiring automatic input_cols inference, but need to avoid using specific
226
- columns, like index columns, during training or inference.
227
-
228
- drop_input_cols: Optional[bool], default=False
229
- If set, the response of predict(), transform() methods will not contain input columns.
230
240
  """
231
241
 
232
242
  def __init__( # type: ignore[no-untyped-def]
@@ -267,7 +277,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
267
277
  self.set_passthrough_cols(passthrough_cols)
268
278
  self.set_drop_input_cols(drop_input_cols)
269
279
  self.set_sample_weight_col(sample_weight_col)
270
- deps = set(SklearnWrapperProvider().dependencies)
280
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
271
281
 
272
282
  self._deps = list(deps)
273
283
 
@@ -295,13 +305,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
295
305
  args=init_args,
296
306
  klass=sklearn.ensemble.HistGradientBoostingRegressor
297
307
  )
298
- self._sklearn_object = sklearn.ensemble.HistGradientBoostingRegressor(
308
+ self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingRegressor(
299
309
  **cleaned_up_init_args,
300
310
  )
301
311
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
302
312
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
303
313
  self._snowpark_cols: Optional[List[str]] = self.input_cols
304
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
314
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
315
+ self._autogenerated = True
305
316
 
306
317
  def _get_rand_id(self) -> str:
307
318
  """
@@ -357,54 +368,48 @@ class HistGradientBoostingRegressor(BaseTransformer):
357
368
  self
358
369
  """
359
370
  self._infer_input_output_cols(dataset)
360
- if isinstance(dataset, pd.DataFrame):
361
- assert self._sklearn_object is not None # keep mypy happy
362
- self._sklearn_object = self._handlers.fit_pandas(
363
- dataset,
364
- self._sklearn_object,
365
- self.input_cols,
366
- self.label_cols,
367
- self.sample_weight_col
368
- )
369
- elif isinstance(dataset, DataFrame):
370
- self._fit_snowpark(dataset)
371
- else:
372
- raise TypeError(
373
- f"Unexpected dataset type: {type(dataset)}."
374
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
375
- )
371
+ if isinstance(dataset, DataFrame):
372
+ session = dataset._session
373
+ assert session is not None # keep mypy happy
374
+ # Validate that key package version in user workspace are supported in snowflake conda channel
375
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
376
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
378
+
379
+ # Specify input columns so column pruning will be enforced
380
+ selected_cols = self._get_active_columns()
381
+ if len(selected_cols) > 0:
382
+ dataset = dataset.select(selected_cols)
383
+
384
+ self._snowpark_cols = dataset.select(self.input_cols).columns
385
+
386
+ # If we are already in a stored procedure, no need to kick off another one.
387
+ if SNOWML_SPROC_ENV in os.environ:
388
+ statement_params = telemetry.get_function_usage_statement_params(
389
+ project=_PROJECT,
390
+ subproject=_SUBPROJECT,
391
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
392
+ api_calls=[Session.call],
393
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
394
+ )
395
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
396
+ pd_df.columns = dataset.columns
397
+ dataset = pd_df
398
+
399
+ model_trainer = ModelTrainerBuilder.build(
400
+ estimator=self._sklearn_object,
401
+ dataset=dataset,
402
+ input_cols=self.input_cols,
403
+ label_cols=self.label_cols,
404
+ sample_weight_col=self.sample_weight_col,
405
+ autogenerated=self._autogenerated,
406
+ subproject=_SUBPROJECT
407
+ )
408
+ self._sklearn_object = model_trainer.train()
376
409
  self._is_fitted = True
377
410
  self._get_model_signatures(dataset)
378
411
  return self
379
412
 
380
- def _fit_snowpark(self, dataset: DataFrame) -> None:
381
- session = dataset._session
382
- assert session is not None # keep mypy happy
383
- # Validate that key package version in user workspace are supported in snowflake conda channel
384
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
385
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
386
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
387
-
388
- # Specify input columns so column pruning will be enforced
389
- selected_cols = self._get_active_columns()
390
- if len(selected_cols) > 0:
391
- dataset = dataset.select(selected_cols)
392
-
393
- estimator = self._sklearn_object
394
- assert estimator is not None # Keep mypy happy
395
-
396
- self._snowpark_cols = dataset.select(self.input_cols).columns
397
-
398
- self._sklearn_object = self._handlers.fit_snowpark(
399
- dataset,
400
- session,
401
- estimator,
402
- ["snowflake-snowpark-python"] + self._get_dependencies(),
403
- self.input_cols,
404
- self.label_cols,
405
- self.sample_weight_col,
406
- )
407
-
408
413
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
409
414
  if self._drop_input_cols:
410
415
  return []
@@ -592,11 +597,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
592
597
  subproject=_SUBPROJECT,
593
598
  custom_tags=dict([("autogen", True)]),
594
599
  )
595
- @telemetry.add_stmt_params_to_df(
596
- project=_PROJECT,
597
- subproject=_SUBPROJECT,
598
- custom_tags=dict([("autogen", True)]),
599
- )
600
600
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
601
601
  """Predict values for X
602
602
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.predict]
@@ -650,11 +650,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
650
650
  subproject=_SUBPROJECT,
651
651
  custom_tags=dict([("autogen", True)]),
652
652
  )
653
- @telemetry.add_stmt_params_to_df(
654
- project=_PROJECT,
655
- subproject=_SUBPROJECT,
656
- custom_tags=dict([("autogen", True)]),
657
- )
658
653
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
659
654
  """Method not supported for this class.
660
655
 
@@ -711,7 +706,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
711
706
  if False:
712
707
  self.fit(dataset)
713
708
  assert self._sklearn_object is not None
714
- return self._sklearn_object.labels_
709
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
710
+ return labels
715
711
  else:
716
712
  raise NotImplementedError
717
713
 
@@ -747,6 +743,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
747
743
  output_cols = []
748
744
 
749
745
  # Make sure column names are valid snowflake identifiers.
746
+ assert output_cols is not None # Make MyPy happy
750
747
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
751
748
 
752
749
  return rv
@@ -757,11 +754,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
757
754
  subproject=_SUBPROJECT,
758
755
  custom_tags=dict([("autogen", True)]),
759
756
  )
760
- @telemetry.add_stmt_params_to_df(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
757
  def predict_proba(
766
758
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
767
759
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -802,11 +794,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
802
794
  subproject=_SUBPROJECT,
803
795
  custom_tags=dict([("autogen", True)]),
804
796
  )
805
- @telemetry.add_stmt_params_to_df(
806
- project=_PROJECT,
807
- subproject=_SUBPROJECT,
808
- custom_tags=dict([("autogen", True)]),
809
- )
810
797
  def predict_log_proba(
811
798
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
812
799
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -843,16 +830,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
843
830
  return output_df
844
831
 
845
832
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
846
- @telemetry.send_api_usage_telemetry(
847
- project=_PROJECT,
848
- subproject=_SUBPROJECT,
849
- custom_tags=dict([("autogen", True)]),
850
- )
851
- @telemetry.add_stmt_params_to_df(
852
- project=_PROJECT,
853
- subproject=_SUBPROJECT,
854
- custom_tags=dict([("autogen", True)]),
855
- )
856
833
  def decision_function(
857
834
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
858
835
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -953,11 +930,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
953
930
  subproject=_SUBPROJECT,
954
931
  custom_tags=dict([("autogen", True)]),
955
932
  )
956
- @telemetry.add_stmt_params_to_df(
957
- project=_PROJECT,
958
- subproject=_SUBPROJECT,
959
- custom_tags=dict([("autogen", True)]),
960
- )
961
933
  def kneighbors(
962
934
  self,
963
935
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1017,9 +989,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
1017
989
  # For classifier, the type of predict is the same as the type of label
1018
990
  if self._sklearn_object._estimator_type == 'classifier':
1019
991
  # label columns is the desired type for output
1020
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
992
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1021
993
  # rename the output columns
1022
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
994
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1023
995
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
996
  ([] if self._drop_input_cols else inputs)
1025
997
  + outputs)