snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LogisticRegression(BaseTransformer):
|
57
58
|
r"""Logistic Regression (aka logit, MaxEnt) classifier
|
58
59
|
For more details on this class, see [sklearn.linear_model.LogisticRegression]
|
@@ -60,6 +61,51 @@ class LogisticRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
penalty: {'l1', 'l2', 'elasticnet', None}, default='l2'
|
64
110
|
Specify the norm of the penalty:
|
65
111
|
|
@@ -171,42 +217,6 @@ class LogisticRegression(BaseTransformer):
|
|
171
217
|
to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
|
172
218
|
to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
|
173
219
|
combination of L1 and L2.
|
174
|
-
|
175
|
-
input_cols: Optional[Union[str, List[str]]]
|
176
|
-
A string or list of strings representing column names that contain features.
|
177
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
178
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
179
|
-
parameters are considered input columns.
|
180
|
-
|
181
|
-
label_cols: Optional[Union[str, List[str]]]
|
182
|
-
A string or list of strings representing column names that contain labels.
|
183
|
-
This is a required param for estimators, as there is no way to infer these
|
184
|
-
columns. If this parameter is not specified, then object is fitted without
|
185
|
-
labels (like a transformer).
|
186
|
-
|
187
|
-
output_cols: Optional[Union[str, List[str]]]
|
188
|
-
A string or list of strings representing column names that will store the
|
189
|
-
output of predict and transform operations. The length of output_cols must
|
190
|
-
match the expected number of output columns from the specific estimator or
|
191
|
-
transformer class used.
|
192
|
-
If this parameter is not specified, output column names are derived by
|
193
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
194
|
-
column names work for estimator's predict() method, but output_cols must
|
195
|
-
be set explicitly for transformers.
|
196
|
-
|
197
|
-
sample_weight_col: Optional[str]
|
198
|
-
A string representing the column name containing the sample weights.
|
199
|
-
This argument is only required when working with weighted datasets.
|
200
|
-
|
201
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
202
|
-
A string or a list of strings indicating column names to be excluded from any
|
203
|
-
operations (such as train, transform, or inference). These specified column(s)
|
204
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
205
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
206
|
-
columns, like index columns, during training or inference.
|
207
|
-
|
208
|
-
drop_input_cols: Optional[bool], default=False
|
209
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
210
220
|
"""
|
211
221
|
|
212
222
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -242,7 +252,7 @@ class LogisticRegression(BaseTransformer):
|
|
242
252
|
self.set_passthrough_cols(passthrough_cols)
|
243
253
|
self.set_drop_input_cols(drop_input_cols)
|
244
254
|
self.set_sample_weight_col(sample_weight_col)
|
245
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
246
256
|
|
247
257
|
self._deps = list(deps)
|
248
258
|
|
@@ -265,13 +275,14 @@ class LogisticRegression(BaseTransformer):
|
|
265
275
|
args=init_args,
|
266
276
|
klass=sklearn.linear_model.LogisticRegression
|
267
277
|
)
|
268
|
-
self._sklearn_object = sklearn.linear_model.LogisticRegression(
|
278
|
+
self._sklearn_object: Any = sklearn.linear_model.LogisticRegression(
|
269
279
|
**cleaned_up_init_args,
|
270
280
|
)
|
271
281
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
272
282
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
273
283
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
274
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
284
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
285
|
+
self._autogenerated = True
|
275
286
|
|
276
287
|
def _get_rand_id(self) -> str:
|
277
288
|
"""
|
@@ -327,54 +338,48 @@ class LogisticRegression(BaseTransformer):
|
|
327
338
|
self
|
328
339
|
"""
|
329
340
|
self._infer_input_output_cols(dataset)
|
330
|
-
if isinstance(dataset,
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
self.
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
341
|
+
if isinstance(dataset, DataFrame):
|
342
|
+
session = dataset._session
|
343
|
+
assert session is not None # keep mypy happy
|
344
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
345
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
346
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
347
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
348
|
+
|
349
|
+
# Specify input columns so column pruning will be enforced
|
350
|
+
selected_cols = self._get_active_columns()
|
351
|
+
if len(selected_cols) > 0:
|
352
|
+
dataset = dataset.select(selected_cols)
|
353
|
+
|
354
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
355
|
+
|
356
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
357
|
+
if SNOWML_SPROC_ENV in os.environ:
|
358
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
359
|
+
project=_PROJECT,
|
360
|
+
subproject=_SUBPROJECT,
|
361
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegression.__class__.__name__),
|
362
|
+
api_calls=[Session.call],
|
363
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
364
|
+
)
|
365
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
366
|
+
pd_df.columns = dataset.columns
|
367
|
+
dataset = pd_df
|
368
|
+
|
369
|
+
model_trainer = ModelTrainerBuilder.build(
|
370
|
+
estimator=self._sklearn_object,
|
371
|
+
dataset=dataset,
|
372
|
+
input_cols=self.input_cols,
|
373
|
+
label_cols=self.label_cols,
|
374
|
+
sample_weight_col=self.sample_weight_col,
|
375
|
+
autogenerated=self._autogenerated,
|
376
|
+
subproject=_SUBPROJECT
|
377
|
+
)
|
378
|
+
self._sklearn_object = model_trainer.train()
|
346
379
|
self._is_fitted = True
|
347
380
|
self._get_model_signatures(dataset)
|
348
381
|
return self
|
349
382
|
|
350
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
351
|
-
session = dataset._session
|
352
|
-
assert session is not None # keep mypy happy
|
353
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
354
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
355
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
356
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
357
|
-
|
358
|
-
# Specify input columns so column pruning will be enforced
|
359
|
-
selected_cols = self._get_active_columns()
|
360
|
-
if len(selected_cols) > 0:
|
361
|
-
dataset = dataset.select(selected_cols)
|
362
|
-
|
363
|
-
estimator = self._sklearn_object
|
364
|
-
assert estimator is not None # Keep mypy happy
|
365
|
-
|
366
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
367
|
-
|
368
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
369
|
-
dataset,
|
370
|
-
session,
|
371
|
-
estimator,
|
372
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
373
|
-
self.input_cols,
|
374
|
-
self.label_cols,
|
375
|
-
self.sample_weight_col,
|
376
|
-
)
|
377
|
-
|
378
383
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
379
384
|
if self._drop_input_cols:
|
380
385
|
return []
|
@@ -562,11 +567,6 @@ class LogisticRegression(BaseTransformer):
|
|
562
567
|
subproject=_SUBPROJECT,
|
563
568
|
custom_tags=dict([("autogen", True)]),
|
564
569
|
)
|
565
|
-
@telemetry.add_stmt_params_to_df(
|
566
|
-
project=_PROJECT,
|
567
|
-
subproject=_SUBPROJECT,
|
568
|
-
custom_tags=dict([("autogen", True)]),
|
569
|
-
)
|
570
570
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
571
571
|
"""Predict class labels for samples in X
|
572
572
|
For more details on this function, see [sklearn.linear_model.LogisticRegression.predict]
|
@@ -620,11 +620,6 @@ class LogisticRegression(BaseTransformer):
|
|
620
620
|
subproject=_SUBPROJECT,
|
621
621
|
custom_tags=dict([("autogen", True)]),
|
622
622
|
)
|
623
|
-
@telemetry.add_stmt_params_to_df(
|
624
|
-
project=_PROJECT,
|
625
|
-
subproject=_SUBPROJECT,
|
626
|
-
custom_tags=dict([("autogen", True)]),
|
627
|
-
)
|
628
623
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
629
624
|
"""Method not supported for this class.
|
630
625
|
|
@@ -681,7 +676,8 @@ class LogisticRegression(BaseTransformer):
|
|
681
676
|
if False:
|
682
677
|
self.fit(dataset)
|
683
678
|
assert self._sklearn_object is not None
|
684
|
-
|
679
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
680
|
+
return labels
|
685
681
|
else:
|
686
682
|
raise NotImplementedError
|
687
683
|
|
@@ -717,6 +713,7 @@ class LogisticRegression(BaseTransformer):
|
|
717
713
|
output_cols = []
|
718
714
|
|
719
715
|
# Make sure column names are valid snowflake identifiers.
|
716
|
+
assert output_cols is not None # Make MyPy happy
|
720
717
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
721
718
|
|
722
719
|
return rv
|
@@ -727,11 +724,6 @@ class LogisticRegression(BaseTransformer):
|
|
727
724
|
subproject=_SUBPROJECT,
|
728
725
|
custom_tags=dict([("autogen", True)]),
|
729
726
|
)
|
730
|
-
@telemetry.add_stmt_params_to_df(
|
731
|
-
project=_PROJECT,
|
732
|
-
subproject=_SUBPROJECT,
|
733
|
-
custom_tags=dict([("autogen", True)]),
|
734
|
-
)
|
735
727
|
def predict_proba(
|
736
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
737
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -774,11 +766,6 @@ class LogisticRegression(BaseTransformer):
|
|
774
766
|
subproject=_SUBPROJECT,
|
775
767
|
custom_tags=dict([("autogen", True)]),
|
776
768
|
)
|
777
|
-
@telemetry.add_stmt_params_to_df(
|
778
|
-
project=_PROJECT,
|
779
|
-
subproject=_SUBPROJECT,
|
780
|
-
custom_tags=dict([("autogen", True)]),
|
781
|
-
)
|
782
769
|
def predict_log_proba(
|
783
770
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
784
771
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -817,16 +804,6 @@ class LogisticRegression(BaseTransformer):
|
|
817
804
|
return output_df
|
818
805
|
|
819
806
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
820
|
-
@telemetry.send_api_usage_telemetry(
|
821
|
-
project=_PROJECT,
|
822
|
-
subproject=_SUBPROJECT,
|
823
|
-
custom_tags=dict([("autogen", True)]),
|
824
|
-
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
807
|
def decision_function(
|
831
808
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
832
809
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -929,11 +906,6 @@ class LogisticRegression(BaseTransformer):
|
|
929
906
|
subproject=_SUBPROJECT,
|
930
907
|
custom_tags=dict([("autogen", True)]),
|
931
908
|
)
|
932
|
-
@telemetry.add_stmt_params_to_df(
|
933
|
-
project=_PROJECT,
|
934
|
-
subproject=_SUBPROJECT,
|
935
|
-
custom_tags=dict([("autogen", True)]),
|
936
|
-
)
|
937
909
|
def kneighbors(
|
938
910
|
self,
|
939
911
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -993,9 +965,9 @@ class LogisticRegression(BaseTransformer):
|
|
993
965
|
# For classifier, the type of predict is the same as the type of label
|
994
966
|
if self._sklearn_object._estimator_type == 'classifier':
|
995
967
|
# label columns is the desired type for output
|
996
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
968
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
997
969
|
# rename the output columns
|
998
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
970
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
999
971
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1000
972
|
([] if self._drop_input_cols else inputs)
|
1001
973
|
+ outputs)
|