snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LogisticRegression(BaseTransformer):
57
58
  r"""Logistic Regression (aka logit, MaxEnt) classifier
58
59
  For more details on this class, see [sklearn.linear_model.LogisticRegression]
@@ -60,6 +61,51 @@ class LogisticRegression(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  penalty: {'l1', 'l2', 'elasticnet', None}, default='l2'
64
110
  Specify the norm of the penalty:
65
111
 
@@ -171,42 +217,6 @@ class LogisticRegression(BaseTransformer):
171
217
  to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
172
218
  to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
173
219
  combination of L1 and L2.
174
-
175
- input_cols: Optional[Union[str, List[str]]]
176
- A string or list of strings representing column names that contain features.
177
- If this parameter is not specified, all columns in the input DataFrame except
178
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
179
- parameters are considered input columns.
180
-
181
- label_cols: Optional[Union[str, List[str]]]
182
- A string or list of strings representing column names that contain labels.
183
- This is a required param for estimators, as there is no way to infer these
184
- columns. If this parameter is not specified, then object is fitted without
185
- labels (like a transformer).
186
-
187
- output_cols: Optional[Union[str, List[str]]]
188
- A string or list of strings representing column names that will store the
189
- output of predict and transform operations. The length of output_cols must
190
- match the expected number of output columns from the specific estimator or
191
- transformer class used.
192
- If this parameter is not specified, output column names are derived by
193
- adding an OUTPUT_ prefix to the label column names. These inferred output
194
- column names work for estimator's predict() method, but output_cols must
195
- be set explicitly for transformers.
196
-
197
- sample_weight_col: Optional[str]
198
- A string representing the column name containing the sample weights.
199
- This argument is only required when working with weighted datasets.
200
-
201
- passthrough_cols: Optional[Union[str, List[str]]]
202
- A string or a list of strings indicating column names to be excluded from any
203
- operations (such as train, transform, or inference). These specified column(s)
204
- will remain untouched throughout the process. This option is helpful in scenarios
205
- requiring automatic input_cols inference, but need to avoid using specific
206
- columns, like index columns, during training or inference.
207
-
208
- drop_input_cols: Optional[bool], default=False
209
- If set, the response of predict(), transform() methods will not contain input columns.
210
220
  """
211
221
 
212
222
  def __init__( # type: ignore[no-untyped-def]
@@ -242,7 +252,7 @@ class LogisticRegression(BaseTransformer):
242
252
  self.set_passthrough_cols(passthrough_cols)
243
253
  self.set_drop_input_cols(drop_input_cols)
244
254
  self.set_sample_weight_col(sample_weight_col)
245
- deps = set(SklearnWrapperProvider().dependencies)
255
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
246
256
 
247
257
  self._deps = list(deps)
248
258
 
@@ -265,13 +275,14 @@ class LogisticRegression(BaseTransformer):
265
275
  args=init_args,
266
276
  klass=sklearn.linear_model.LogisticRegression
267
277
  )
268
- self._sklearn_object = sklearn.linear_model.LogisticRegression(
278
+ self._sklearn_object: Any = sklearn.linear_model.LogisticRegression(
269
279
  **cleaned_up_init_args,
270
280
  )
271
281
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
272
282
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
273
283
  self._snowpark_cols: Optional[List[str]] = self.input_cols
274
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
284
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
285
+ self._autogenerated = True
275
286
 
276
287
  def _get_rand_id(self) -> str:
277
288
  """
@@ -327,54 +338,48 @@ class LogisticRegression(BaseTransformer):
327
338
  self
328
339
  """
329
340
  self._infer_input_output_cols(dataset)
330
- if isinstance(dataset, pd.DataFrame):
331
- assert self._sklearn_object is not None # keep mypy happy
332
- self._sklearn_object = self._handlers.fit_pandas(
333
- dataset,
334
- self._sklearn_object,
335
- self.input_cols,
336
- self.label_cols,
337
- self.sample_weight_col
338
- )
339
- elif isinstance(dataset, DataFrame):
340
- self._fit_snowpark(dataset)
341
- else:
342
- raise TypeError(
343
- f"Unexpected dataset type: {type(dataset)}."
344
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
345
- )
341
+ if isinstance(dataset, DataFrame):
342
+ session = dataset._session
343
+ assert session is not None # keep mypy happy
344
+ # Validate that key package version in user workspace are supported in snowflake conda channel
345
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
346
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
347
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
348
+
349
+ # Specify input columns so column pruning will be enforced
350
+ selected_cols = self._get_active_columns()
351
+ if len(selected_cols) > 0:
352
+ dataset = dataset.select(selected_cols)
353
+
354
+ self._snowpark_cols = dataset.select(self.input_cols).columns
355
+
356
+ # If we are already in a stored procedure, no need to kick off another one.
357
+ if SNOWML_SPROC_ENV in os.environ:
358
+ statement_params = telemetry.get_function_usage_statement_params(
359
+ project=_PROJECT,
360
+ subproject=_SUBPROJECT,
361
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegression.__class__.__name__),
362
+ api_calls=[Session.call],
363
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
364
+ )
365
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
366
+ pd_df.columns = dataset.columns
367
+ dataset = pd_df
368
+
369
+ model_trainer = ModelTrainerBuilder.build(
370
+ estimator=self._sklearn_object,
371
+ dataset=dataset,
372
+ input_cols=self.input_cols,
373
+ label_cols=self.label_cols,
374
+ sample_weight_col=self.sample_weight_col,
375
+ autogenerated=self._autogenerated,
376
+ subproject=_SUBPROJECT
377
+ )
378
+ self._sklearn_object = model_trainer.train()
346
379
  self._is_fitted = True
347
380
  self._get_model_signatures(dataset)
348
381
  return self
349
382
 
350
- def _fit_snowpark(self, dataset: DataFrame) -> None:
351
- session = dataset._session
352
- assert session is not None # keep mypy happy
353
- # Validate that key package version in user workspace are supported in snowflake conda channel
354
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
355
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
356
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
357
-
358
- # Specify input columns so column pruning will be enforced
359
- selected_cols = self._get_active_columns()
360
- if len(selected_cols) > 0:
361
- dataset = dataset.select(selected_cols)
362
-
363
- estimator = self._sklearn_object
364
- assert estimator is not None # Keep mypy happy
365
-
366
- self._snowpark_cols = dataset.select(self.input_cols).columns
367
-
368
- self._sklearn_object = self._handlers.fit_snowpark(
369
- dataset,
370
- session,
371
- estimator,
372
- ["snowflake-snowpark-python"] + self._get_dependencies(),
373
- self.input_cols,
374
- self.label_cols,
375
- self.sample_weight_col,
376
- )
377
-
378
383
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
379
384
  if self._drop_input_cols:
380
385
  return []
@@ -562,11 +567,6 @@ class LogisticRegression(BaseTransformer):
562
567
  subproject=_SUBPROJECT,
563
568
  custom_tags=dict([("autogen", True)]),
564
569
  )
565
- @telemetry.add_stmt_params_to_df(
566
- project=_PROJECT,
567
- subproject=_SUBPROJECT,
568
- custom_tags=dict([("autogen", True)]),
569
- )
570
570
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
571
571
  """Predict class labels for samples in X
572
572
  For more details on this function, see [sklearn.linear_model.LogisticRegression.predict]
@@ -620,11 +620,6 @@ class LogisticRegression(BaseTransformer):
620
620
  subproject=_SUBPROJECT,
621
621
  custom_tags=dict([("autogen", True)]),
622
622
  )
623
- @telemetry.add_stmt_params_to_df(
624
- project=_PROJECT,
625
- subproject=_SUBPROJECT,
626
- custom_tags=dict([("autogen", True)]),
627
- )
628
623
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
629
624
  """Method not supported for this class.
630
625
 
@@ -681,7 +676,8 @@ class LogisticRegression(BaseTransformer):
681
676
  if False:
682
677
  self.fit(dataset)
683
678
  assert self._sklearn_object is not None
684
- return self._sklearn_object.labels_
679
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
680
+ return labels
685
681
  else:
686
682
  raise NotImplementedError
687
683
 
@@ -717,6 +713,7 @@ class LogisticRegression(BaseTransformer):
717
713
  output_cols = []
718
714
 
719
715
  # Make sure column names are valid snowflake identifiers.
716
+ assert output_cols is not None # Make MyPy happy
720
717
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
721
718
 
722
719
  return rv
@@ -727,11 +724,6 @@ class LogisticRegression(BaseTransformer):
727
724
  subproject=_SUBPROJECT,
728
725
  custom_tags=dict([("autogen", True)]),
729
726
  )
730
- @telemetry.add_stmt_params_to_df(
731
- project=_PROJECT,
732
- subproject=_SUBPROJECT,
733
- custom_tags=dict([("autogen", True)]),
734
- )
735
727
  def predict_proba(
736
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
737
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -774,11 +766,6 @@ class LogisticRegression(BaseTransformer):
774
766
  subproject=_SUBPROJECT,
775
767
  custom_tags=dict([("autogen", True)]),
776
768
  )
777
- @telemetry.add_stmt_params_to_df(
778
- project=_PROJECT,
779
- subproject=_SUBPROJECT,
780
- custom_tags=dict([("autogen", True)]),
781
- )
782
769
  def predict_log_proba(
783
770
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
784
771
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -817,16 +804,6 @@ class LogisticRegression(BaseTransformer):
817
804
  return output_df
818
805
 
819
806
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
820
- @telemetry.send_api_usage_telemetry(
821
- project=_PROJECT,
822
- subproject=_SUBPROJECT,
823
- custom_tags=dict([("autogen", True)]),
824
- )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
807
  def decision_function(
831
808
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
832
809
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -929,11 +906,6 @@ class LogisticRegression(BaseTransformer):
929
906
  subproject=_SUBPROJECT,
930
907
  custom_tags=dict([("autogen", True)]),
931
908
  )
932
- @telemetry.add_stmt_params_to_df(
933
- project=_PROJECT,
934
- subproject=_SUBPROJECT,
935
- custom_tags=dict([("autogen", True)]),
936
- )
937
909
  def kneighbors(
938
910
  self,
939
911
  dataset: Union[DataFrame, pd.DataFrame],
@@ -993,9 +965,9 @@ class LogisticRegression(BaseTransformer):
993
965
  # For classifier, the type of predict is the same as the type of label
994
966
  if self._sklearn_object._estimator_type == 'classifier':
995
967
  # label columns is the desired type for output
996
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
968
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
997
969
  # rename the output columns
998
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
970
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
999
971
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
972
  ([] if self._drop_input_cols else inputs)
1001
973
  + outputs)