snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class FeatureAgglomeration(BaseTransformer):
|
57
58
|
r"""Agglomerate features
|
58
59
|
For more details on this class, see [sklearn.cluster.FeatureAgglomeration]
|
@@ -60,6 +61,49 @@ class FeatureAgglomeration(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int or None, default=2
|
64
108
|
The number of clusters to find. It must be ``None`` if
|
65
109
|
``distance_threshold`` is not ``None``.
|
@@ -132,42 +176,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
132
176
|
Computes distances between clusters even if `distance_threshold` is not
|
133
177
|
used. This can be used to make dendrogram visualization, but introduces
|
134
178
|
a computational and memory overhead.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
140
|
-
parameters are considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or a list of strings indicating column names to be excluded from any
|
164
|
-
operations (such as train, transform, or inference). These specified column(s)
|
165
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
166
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
167
|
-
columns, like index columns, during training or inference.
|
168
|
-
|
169
|
-
drop_input_cols: Optional[bool], default=False
|
170
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
171
179
|
"""
|
172
180
|
|
173
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -198,7 +206,7 @@ class FeatureAgglomeration(BaseTransformer):
|
|
198
206
|
self.set_passthrough_cols(passthrough_cols)
|
199
207
|
self.set_drop_input_cols(drop_input_cols)
|
200
208
|
self.set_sample_weight_col(sample_weight_col)
|
201
|
-
deps = set(
|
209
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
202
210
|
|
203
211
|
self._deps = list(deps)
|
204
212
|
|
@@ -216,13 +224,14 @@ class FeatureAgglomeration(BaseTransformer):
|
|
216
224
|
args=init_args,
|
217
225
|
klass=sklearn.cluster.FeatureAgglomeration
|
218
226
|
)
|
219
|
-
self._sklearn_object = sklearn.cluster.FeatureAgglomeration(
|
227
|
+
self._sklearn_object: Any = sklearn.cluster.FeatureAgglomeration(
|
220
228
|
**cleaned_up_init_args,
|
221
229
|
)
|
222
230
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
223
231
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
224
232
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
225
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FeatureAgglomeration.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
233
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FeatureAgglomeration.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
234
|
+
self._autogenerated = True
|
226
235
|
|
227
236
|
def _get_rand_id(self) -> str:
|
228
237
|
"""
|
@@ -278,54 +287,48 @@ class FeatureAgglomeration(BaseTransformer):
|
|
278
287
|
self
|
279
288
|
"""
|
280
289
|
self._infer_input_output_cols(dataset)
|
281
|
-
if isinstance(dataset,
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
self.
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
290
|
+
if isinstance(dataset, DataFrame):
|
291
|
+
session = dataset._session
|
292
|
+
assert session is not None # keep mypy happy
|
293
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
294
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
295
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
296
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
297
|
+
|
298
|
+
# Specify input columns so column pruning will be enforced
|
299
|
+
selected_cols = self._get_active_columns()
|
300
|
+
if len(selected_cols) > 0:
|
301
|
+
dataset = dataset.select(selected_cols)
|
302
|
+
|
303
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
304
|
+
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
306
|
+
if SNOWML_SPROC_ENV in os.environ:
|
307
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
308
|
+
project=_PROJECT,
|
309
|
+
subproject=_SUBPROJECT,
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FeatureAgglomeration.__class__.__name__),
|
311
|
+
api_calls=[Session.call],
|
312
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
313
|
+
)
|
314
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
315
|
+
pd_df.columns = dataset.columns
|
316
|
+
dataset = pd_df
|
317
|
+
|
318
|
+
model_trainer = ModelTrainerBuilder.build(
|
319
|
+
estimator=self._sklearn_object,
|
320
|
+
dataset=dataset,
|
321
|
+
input_cols=self.input_cols,
|
322
|
+
label_cols=self.label_cols,
|
323
|
+
sample_weight_col=self.sample_weight_col,
|
324
|
+
autogenerated=self._autogenerated,
|
325
|
+
subproject=_SUBPROJECT
|
326
|
+
)
|
327
|
+
self._sklearn_object = model_trainer.train()
|
297
328
|
self._is_fitted = True
|
298
329
|
self._get_model_signatures(dataset)
|
299
330
|
return self
|
300
331
|
|
301
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
302
|
-
session = dataset._session
|
303
|
-
assert session is not None # keep mypy happy
|
304
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
305
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
306
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
307
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
308
|
-
|
309
|
-
# Specify input columns so column pruning will be enforced
|
310
|
-
selected_cols = self._get_active_columns()
|
311
|
-
if len(selected_cols) > 0:
|
312
|
-
dataset = dataset.select(selected_cols)
|
313
|
-
|
314
|
-
estimator = self._sklearn_object
|
315
|
-
assert estimator is not None # Keep mypy happy
|
316
|
-
|
317
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
318
|
-
|
319
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
320
|
-
dataset,
|
321
|
-
session,
|
322
|
-
estimator,
|
323
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
324
|
-
self.input_cols,
|
325
|
-
self.label_cols,
|
326
|
-
self.sample_weight_col,
|
327
|
-
)
|
328
|
-
|
329
332
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
330
333
|
if self._drop_input_cols:
|
331
334
|
return []
|
@@ -513,11 +516,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
513
516
|
subproject=_SUBPROJECT,
|
514
517
|
custom_tags=dict([("autogen", True)]),
|
515
518
|
)
|
516
|
-
@telemetry.add_stmt_params_to_df(
|
517
|
-
project=_PROJECT,
|
518
|
-
subproject=_SUBPROJECT,
|
519
|
-
custom_tags=dict([("autogen", True)]),
|
520
|
-
)
|
521
519
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
522
520
|
"""Method not supported for this class.
|
523
521
|
|
@@ -569,11 +567,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
569
567
|
subproject=_SUBPROJECT,
|
570
568
|
custom_tags=dict([("autogen", True)]),
|
571
569
|
)
|
572
|
-
@telemetry.add_stmt_params_to_df(
|
573
|
-
project=_PROJECT,
|
574
|
-
subproject=_SUBPROJECT,
|
575
|
-
custom_tags=dict([("autogen", True)]),
|
576
|
-
)
|
577
570
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
578
571
|
"""Transform a new matrix using the built clustering
|
579
572
|
For more details on this function, see [sklearn.cluster.FeatureAgglomeration.transform]
|
@@ -634,7 +627,8 @@ class FeatureAgglomeration(BaseTransformer):
|
|
634
627
|
if True:
|
635
628
|
self.fit(dataset)
|
636
629
|
assert self._sklearn_object is not None
|
637
|
-
|
630
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
631
|
+
return labels
|
638
632
|
else:
|
639
633
|
raise NotImplementedError
|
640
634
|
|
@@ -670,6 +664,7 @@ class FeatureAgglomeration(BaseTransformer):
|
|
670
664
|
output_cols = []
|
671
665
|
|
672
666
|
# Make sure column names are valid snowflake identifiers.
|
667
|
+
assert output_cols is not None # Make MyPy happy
|
673
668
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
674
669
|
|
675
670
|
return rv
|
@@ -680,11 +675,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
680
675
|
subproject=_SUBPROJECT,
|
681
676
|
custom_tags=dict([("autogen", True)]),
|
682
677
|
)
|
683
|
-
@telemetry.add_stmt_params_to_df(
|
684
|
-
project=_PROJECT,
|
685
|
-
subproject=_SUBPROJECT,
|
686
|
-
custom_tags=dict([("autogen", True)]),
|
687
|
-
)
|
688
678
|
def predict_proba(
|
689
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
690
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -725,11 +715,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
725
715
|
subproject=_SUBPROJECT,
|
726
716
|
custom_tags=dict([("autogen", True)]),
|
727
717
|
)
|
728
|
-
@telemetry.add_stmt_params_to_df(
|
729
|
-
project=_PROJECT,
|
730
|
-
subproject=_SUBPROJECT,
|
731
|
-
custom_tags=dict([("autogen", True)]),
|
732
|
-
)
|
733
718
|
def predict_log_proba(
|
734
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
735
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -766,16 +751,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
766
751
|
return output_df
|
767
752
|
|
768
753
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
769
|
-
@telemetry.send_api_usage_telemetry(
|
770
|
-
project=_PROJECT,
|
771
|
-
subproject=_SUBPROJECT,
|
772
|
-
custom_tags=dict([("autogen", True)]),
|
773
|
-
)
|
774
|
-
@telemetry.add_stmt_params_to_df(
|
775
|
-
project=_PROJECT,
|
776
|
-
subproject=_SUBPROJECT,
|
777
|
-
custom_tags=dict([("autogen", True)]),
|
778
|
-
)
|
779
754
|
def decision_function(
|
780
755
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
781
756
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -874,11 +849,6 @@ class FeatureAgglomeration(BaseTransformer):
|
|
874
849
|
subproject=_SUBPROJECT,
|
875
850
|
custom_tags=dict([("autogen", True)]),
|
876
851
|
)
|
877
|
-
@telemetry.add_stmt_params_to_df(
|
878
|
-
project=_PROJECT,
|
879
|
-
subproject=_SUBPROJECT,
|
880
|
-
custom_tags=dict([("autogen", True)]),
|
881
|
-
)
|
882
852
|
def kneighbors(
|
883
853
|
self,
|
884
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -938,9 +908,9 @@ class FeatureAgglomeration(BaseTransformer):
|
|
938
908
|
# For classifier, the type of predict is the same as the type of label
|
939
909
|
if self._sklearn_object._estimator_type == 'classifier':
|
940
910
|
# label columns is the desired type for output
|
941
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
911
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
942
912
|
# rename the output columns
|
943
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
913
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
944
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
945
915
|
([] if self._drop_input_cols else inputs)
|
946
916
|
+ outputs)
|