snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class FeatureAgglomeration(BaseTransformer):
57
58
  r"""Agglomerate features
58
59
  For more details on this class, see [sklearn.cluster.FeatureAgglomeration]
@@ -60,6 +61,49 @@ class FeatureAgglomeration(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int or None, default=2
64
108
  The number of clusters to find. It must be ``None`` if
65
109
  ``distance_threshold`` is not ``None``.
@@ -132,42 +176,6 @@ class FeatureAgglomeration(BaseTransformer):
132
176
  Computes distances between clusters even if `distance_threshold` is not
133
177
  used. This can be used to make dendrogram visualization, but introduces
134
178
  a computational and memory overhead.
135
-
136
- input_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain features.
138
- If this parameter is not specified, all columns in the input DataFrame except
139
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
140
- parameters are considered input columns.
141
-
142
- label_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that contain labels.
144
- This is a required param for estimators, as there is no way to infer these
145
- columns. If this parameter is not specified, then object is fitted without
146
- labels (like a transformer).
147
-
148
- output_cols: Optional[Union[str, List[str]]]
149
- A string or list of strings representing column names that will store the
150
- output of predict and transform operations. The length of output_cols must
151
- match the expected number of output columns from the specific estimator or
152
- transformer class used.
153
- If this parameter is not specified, output column names are derived by
154
- adding an OUTPUT_ prefix to the label column names. These inferred output
155
- column names work for estimator's predict() method, but output_cols must
156
- be set explicitly for transformers.
157
-
158
- sample_weight_col: Optional[str]
159
- A string representing the column name containing the sample weights.
160
- This argument is only required when working with weighted datasets.
161
-
162
- passthrough_cols: Optional[Union[str, List[str]]]
163
- A string or a list of strings indicating column names to be excluded from any
164
- operations (such as train, transform, or inference). These specified column(s)
165
- will remain untouched throughout the process. This option is helpful in scenarios
166
- requiring automatic input_cols inference, but need to avoid using specific
167
- columns, like index columns, during training or inference.
168
-
169
- drop_input_cols: Optional[bool], default=False
170
- If set, the response of predict(), transform() methods will not contain input columns.
171
179
  """
172
180
 
173
181
  def __init__( # type: ignore[no-untyped-def]
@@ -198,7 +206,7 @@ class FeatureAgglomeration(BaseTransformer):
198
206
  self.set_passthrough_cols(passthrough_cols)
199
207
  self.set_drop_input_cols(drop_input_cols)
200
208
  self.set_sample_weight_col(sample_weight_col)
201
- deps = set(SklearnWrapperProvider().dependencies)
209
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
202
210
 
203
211
  self._deps = list(deps)
204
212
 
@@ -216,13 +224,14 @@ class FeatureAgglomeration(BaseTransformer):
216
224
  args=init_args,
217
225
  klass=sklearn.cluster.FeatureAgglomeration
218
226
  )
219
- self._sklearn_object = sklearn.cluster.FeatureAgglomeration(
227
+ self._sklearn_object: Any = sklearn.cluster.FeatureAgglomeration(
220
228
  **cleaned_up_init_args,
221
229
  )
222
230
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
223
231
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
224
232
  self._snowpark_cols: Optional[List[str]] = self.input_cols
225
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=FeatureAgglomeration.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
233
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=FeatureAgglomeration.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
+ self._autogenerated = True
226
235
 
227
236
  def _get_rand_id(self) -> str:
228
237
  """
@@ -278,54 +287,48 @@ class FeatureAgglomeration(BaseTransformer):
278
287
  self
279
288
  """
280
289
  self._infer_input_output_cols(dataset)
281
- if isinstance(dataset, pd.DataFrame):
282
- assert self._sklearn_object is not None # keep mypy happy
283
- self._sklearn_object = self._handlers.fit_pandas(
284
- dataset,
285
- self._sklearn_object,
286
- self.input_cols,
287
- self.label_cols,
288
- self.sample_weight_col
289
- )
290
- elif isinstance(dataset, DataFrame):
291
- self._fit_snowpark(dataset)
292
- else:
293
- raise TypeError(
294
- f"Unexpected dataset type: {type(dataset)}."
295
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
296
- )
290
+ if isinstance(dataset, DataFrame):
291
+ session = dataset._session
292
+ assert session is not None # keep mypy happy
293
+ # Validate that key package version in user workspace are supported in snowflake conda channel
294
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
295
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
296
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
297
+
298
+ # Specify input columns so column pruning will be enforced
299
+ selected_cols = self._get_active_columns()
300
+ if len(selected_cols) > 0:
301
+ dataset = dataset.select(selected_cols)
302
+
303
+ self._snowpark_cols = dataset.select(self.input_cols).columns
304
+
305
+ # If we are already in a stored procedure, no need to kick off another one.
306
+ if SNOWML_SPROC_ENV in os.environ:
307
+ statement_params = telemetry.get_function_usage_statement_params(
308
+ project=_PROJECT,
309
+ subproject=_SUBPROJECT,
310
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FeatureAgglomeration.__class__.__name__),
311
+ api_calls=[Session.call],
312
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
+ )
314
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
315
+ pd_df.columns = dataset.columns
316
+ dataset = pd_df
317
+
318
+ model_trainer = ModelTrainerBuilder.build(
319
+ estimator=self._sklearn_object,
320
+ dataset=dataset,
321
+ input_cols=self.input_cols,
322
+ label_cols=self.label_cols,
323
+ sample_weight_col=self.sample_weight_col,
324
+ autogenerated=self._autogenerated,
325
+ subproject=_SUBPROJECT
326
+ )
327
+ self._sklearn_object = model_trainer.train()
297
328
  self._is_fitted = True
298
329
  self._get_model_signatures(dataset)
299
330
  return self
300
331
 
301
- def _fit_snowpark(self, dataset: DataFrame) -> None:
302
- session = dataset._session
303
- assert session is not None # keep mypy happy
304
- # Validate that key package version in user workspace are supported in snowflake conda channel
305
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
306
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
307
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
308
-
309
- # Specify input columns so column pruning will be enforced
310
- selected_cols = self._get_active_columns()
311
- if len(selected_cols) > 0:
312
- dataset = dataset.select(selected_cols)
313
-
314
- estimator = self._sklearn_object
315
- assert estimator is not None # Keep mypy happy
316
-
317
- self._snowpark_cols = dataset.select(self.input_cols).columns
318
-
319
- self._sklearn_object = self._handlers.fit_snowpark(
320
- dataset,
321
- session,
322
- estimator,
323
- ["snowflake-snowpark-python"] + self._get_dependencies(),
324
- self.input_cols,
325
- self.label_cols,
326
- self.sample_weight_col,
327
- )
328
-
329
332
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
330
333
  if self._drop_input_cols:
331
334
  return []
@@ -513,11 +516,6 @@ class FeatureAgglomeration(BaseTransformer):
513
516
  subproject=_SUBPROJECT,
514
517
  custom_tags=dict([("autogen", True)]),
515
518
  )
516
- @telemetry.add_stmt_params_to_df(
517
- project=_PROJECT,
518
- subproject=_SUBPROJECT,
519
- custom_tags=dict([("autogen", True)]),
520
- )
521
519
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
522
520
  """Method not supported for this class.
523
521
 
@@ -569,11 +567,6 @@ class FeatureAgglomeration(BaseTransformer):
569
567
  subproject=_SUBPROJECT,
570
568
  custom_tags=dict([("autogen", True)]),
571
569
  )
572
- @telemetry.add_stmt_params_to_df(
573
- project=_PROJECT,
574
- subproject=_SUBPROJECT,
575
- custom_tags=dict([("autogen", True)]),
576
- )
577
570
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
578
571
  """Transform a new matrix using the built clustering
579
572
  For more details on this function, see [sklearn.cluster.FeatureAgglomeration.transform]
@@ -634,7 +627,8 @@ class FeatureAgglomeration(BaseTransformer):
634
627
  if True:
635
628
  self.fit(dataset)
636
629
  assert self._sklearn_object is not None
637
- return self._sklearn_object.labels_
630
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
631
+ return labels
638
632
  else:
639
633
  raise NotImplementedError
640
634
 
@@ -670,6 +664,7 @@ class FeatureAgglomeration(BaseTransformer):
670
664
  output_cols = []
671
665
 
672
666
  # Make sure column names are valid snowflake identifiers.
667
+ assert output_cols is not None # Make MyPy happy
673
668
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
674
669
 
675
670
  return rv
@@ -680,11 +675,6 @@ class FeatureAgglomeration(BaseTransformer):
680
675
  subproject=_SUBPROJECT,
681
676
  custom_tags=dict([("autogen", True)]),
682
677
  )
683
- @telemetry.add_stmt_params_to_df(
684
- project=_PROJECT,
685
- subproject=_SUBPROJECT,
686
- custom_tags=dict([("autogen", True)]),
687
- )
688
678
  def predict_proba(
689
679
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
690
680
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -725,11 +715,6 @@ class FeatureAgglomeration(BaseTransformer):
725
715
  subproject=_SUBPROJECT,
726
716
  custom_tags=dict([("autogen", True)]),
727
717
  )
728
- @telemetry.add_stmt_params_to_df(
729
- project=_PROJECT,
730
- subproject=_SUBPROJECT,
731
- custom_tags=dict([("autogen", True)]),
732
- )
733
718
  def predict_log_proba(
734
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
735
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -766,16 +751,6 @@ class FeatureAgglomeration(BaseTransformer):
766
751
  return output_df
767
752
 
768
753
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
769
- @telemetry.send_api_usage_telemetry(
770
- project=_PROJECT,
771
- subproject=_SUBPROJECT,
772
- custom_tags=dict([("autogen", True)]),
773
- )
774
- @telemetry.add_stmt_params_to_df(
775
- project=_PROJECT,
776
- subproject=_SUBPROJECT,
777
- custom_tags=dict([("autogen", True)]),
778
- )
779
754
  def decision_function(
780
755
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
781
756
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -874,11 +849,6 @@ class FeatureAgglomeration(BaseTransformer):
874
849
  subproject=_SUBPROJECT,
875
850
  custom_tags=dict([("autogen", True)]),
876
851
  )
877
- @telemetry.add_stmt_params_to_df(
878
- project=_PROJECT,
879
- subproject=_SUBPROJECT,
880
- custom_tags=dict([("autogen", True)]),
881
- )
882
852
  def kneighbors(
883
853
  self,
884
854
  dataset: Union[DataFrame, pd.DataFrame],
@@ -938,9 +908,9 @@ class FeatureAgglomeration(BaseTransformer):
938
908
  # For classifier, the type of predict is the same as the type of label
939
909
  if self._sklearn_object._estimator_type == 'classifier':
940
910
  # label columns is the desired type for output
941
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
911
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
942
912
  # rename the output columns
943
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
913
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
944
914
  self._model_signature_dict["predict"] = ModelSignature(inputs,
945
915
  ([] if self._drop_input_cols else inputs)
946
916
  + outputs)