snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OneVsOneClassifier(BaseTransformer):
|
57
58
|
r"""One-vs-one multiclass strategy
|
58
59
|
For more details on this class, see [sklearn.multiclass.OneVsOneClassifier]
|
@@ -60,56 +61,65 @@ class OneVsOneClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
estimator: estimator object
|
64
|
-
A regressor or a classifier that implements :term:`fit`.
|
65
|
-
When a classifier is passed, :term:`decision_function` will be used
|
66
|
-
in priority and it will fallback to :term:`predict_proba` if it is not
|
67
|
-
available.
|
68
|
-
When a regressor is passed, :term:`predict` is used.
|
69
|
-
|
70
|
-
n_jobs: int, default=None
|
71
|
-
The number of jobs to use for the computation: the `n_classes * (
|
72
|
-
n_classes - 1) / 2` OVO problems are computed in parallel.
|
73
|
-
|
74
|
-
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
75
|
-
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
76
|
-
for more details.
|
77
64
|
|
78
65
|
input_cols: Optional[Union[str, List[str]]]
|
79
66
|
A string or list of strings representing column names that contain features.
|
80
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
81
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
82
|
-
parameters are considered input columns.
|
83
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
84
72
|
label_cols: Optional[Union[str, List[str]]]
|
85
73
|
A string or list of strings representing column names that contain labels.
|
86
|
-
|
87
|
-
|
88
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
89
76
|
|
90
77
|
output_cols: Optional[Union[str, List[str]]]
|
91
78
|
A string or list of strings representing column names that will store the
|
92
79
|
output of predict and transform operations. The length of output_cols must
|
93
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
94
81
|
transformer class used.
|
95
|
-
If this parameter
|
96
|
-
|
97
|
-
|
98
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
99
91
|
|
100
92
|
sample_weight_col: Optional[str]
|
101
93
|
A string representing the column name containing the sample weights.
|
102
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
103
97
|
|
104
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
105
99
|
A string or a list of strings indicating column names to be excluded from any
|
106
100
|
operations (such as train, transform, or inference). These specified column(s)
|
107
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
108
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
109
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
110
105
|
|
111
106
|
drop_input_cols: Optional[bool], default=False
|
112
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
estimator: estimator object
|
110
|
+
A regressor or a classifier that implements :term:`fit`.
|
111
|
+
When a classifier is passed, :term:`decision_function` will be used
|
112
|
+
in priority and it will fallback to :term:`predict_proba` if it is not
|
113
|
+
available.
|
114
|
+
When a regressor is passed, :term:`predict` is used.
|
115
|
+
|
116
|
+
n_jobs: int, default=None
|
117
|
+
The number of jobs to use for the computation: the `n_classes * (
|
118
|
+
n_classes - 1) / 2` OVO problems are computed in parallel.
|
119
|
+
|
120
|
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
121
|
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
122
|
+
for more details.
|
113
123
|
"""
|
114
124
|
|
115
125
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -132,7 +142,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
132
142
|
self.set_passthrough_cols(passthrough_cols)
|
133
143
|
self.set_drop_input_cols(drop_input_cols)
|
134
144
|
self.set_sample_weight_col(sample_weight_col)
|
135
|
-
deps = set(
|
145
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
136
146
|
deps = deps | gather_dependencies(estimator)
|
137
147
|
self._deps = list(deps)
|
138
148
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -142,13 +152,14 @@ class OneVsOneClassifier(BaseTransformer):
|
|
142
152
|
args=init_args,
|
143
153
|
klass=sklearn.multiclass.OneVsOneClassifier
|
144
154
|
)
|
145
|
-
self._sklearn_object = sklearn.multiclass.OneVsOneClassifier(
|
155
|
+
self._sklearn_object: Any = sklearn.multiclass.OneVsOneClassifier(
|
146
156
|
**cleaned_up_init_args,
|
147
157
|
)
|
148
158
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
149
159
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
150
160
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
151
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
161
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
162
|
+
self._autogenerated = True
|
152
163
|
|
153
164
|
def _get_rand_id(self) -> str:
|
154
165
|
"""
|
@@ -204,54 +215,48 @@ class OneVsOneClassifier(BaseTransformer):
|
|
204
215
|
self
|
205
216
|
"""
|
206
217
|
self._infer_input_output_cols(dataset)
|
207
|
-
if isinstance(dataset,
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
self.
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
218
|
+
if isinstance(dataset, DataFrame):
|
219
|
+
session = dataset._session
|
220
|
+
assert session is not None # keep mypy happy
|
221
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
222
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
223
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
224
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
225
|
+
|
226
|
+
# Specify input columns so column pruning will be enforced
|
227
|
+
selected_cols = self._get_active_columns()
|
228
|
+
if len(selected_cols) > 0:
|
229
|
+
dataset = dataset.select(selected_cols)
|
230
|
+
|
231
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
232
|
+
|
233
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
234
|
+
if SNOWML_SPROC_ENV in os.environ:
|
235
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
236
|
+
project=_PROJECT,
|
237
|
+
subproject=_SUBPROJECT,
|
238
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsOneClassifier.__class__.__name__),
|
239
|
+
api_calls=[Session.call],
|
240
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
241
|
+
)
|
242
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
|
+
pd_df.columns = dataset.columns
|
244
|
+
dataset = pd_df
|
245
|
+
|
246
|
+
model_trainer = ModelTrainerBuilder.build(
|
247
|
+
estimator=self._sklearn_object,
|
248
|
+
dataset=dataset,
|
249
|
+
input_cols=self.input_cols,
|
250
|
+
label_cols=self.label_cols,
|
251
|
+
sample_weight_col=self.sample_weight_col,
|
252
|
+
autogenerated=self._autogenerated,
|
253
|
+
subproject=_SUBPROJECT
|
254
|
+
)
|
255
|
+
self._sklearn_object = model_trainer.train()
|
223
256
|
self._is_fitted = True
|
224
257
|
self._get_model_signatures(dataset)
|
225
258
|
return self
|
226
259
|
|
227
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
228
|
-
session = dataset._session
|
229
|
-
assert session is not None # keep mypy happy
|
230
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
-
|
235
|
-
# Specify input columns so column pruning will be enforced
|
236
|
-
selected_cols = self._get_active_columns()
|
237
|
-
if len(selected_cols) > 0:
|
238
|
-
dataset = dataset.select(selected_cols)
|
239
|
-
|
240
|
-
estimator = self._sklearn_object
|
241
|
-
assert estimator is not None # Keep mypy happy
|
242
|
-
|
243
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
-
|
245
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
246
|
-
dataset,
|
247
|
-
session,
|
248
|
-
estimator,
|
249
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
250
|
-
self.input_cols,
|
251
|
-
self.label_cols,
|
252
|
-
self.sample_weight_col,
|
253
|
-
)
|
254
|
-
|
255
260
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
256
261
|
if self._drop_input_cols:
|
257
262
|
return []
|
@@ -439,11 +444,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
439
444
|
subproject=_SUBPROJECT,
|
440
445
|
custom_tags=dict([("autogen", True)]),
|
441
446
|
)
|
442
|
-
@telemetry.add_stmt_params_to_df(
|
443
|
-
project=_PROJECT,
|
444
|
-
subproject=_SUBPROJECT,
|
445
|
-
custom_tags=dict([("autogen", True)]),
|
446
|
-
)
|
447
447
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
448
448
|
"""Estimate the best class label for each sample in X
|
449
449
|
For more details on this function, see [sklearn.multiclass.OneVsOneClassifier.predict]
|
@@ -497,11 +497,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
497
497
|
subproject=_SUBPROJECT,
|
498
498
|
custom_tags=dict([("autogen", True)]),
|
499
499
|
)
|
500
|
-
@telemetry.add_stmt_params_to_df(
|
501
|
-
project=_PROJECT,
|
502
|
-
subproject=_SUBPROJECT,
|
503
|
-
custom_tags=dict([("autogen", True)]),
|
504
|
-
)
|
505
500
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
506
501
|
"""Method not supported for this class.
|
507
502
|
|
@@ -558,7 +553,8 @@ class OneVsOneClassifier(BaseTransformer):
|
|
558
553
|
if False:
|
559
554
|
self.fit(dataset)
|
560
555
|
assert self._sklearn_object is not None
|
561
|
-
|
556
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
557
|
+
return labels
|
562
558
|
else:
|
563
559
|
raise NotImplementedError
|
564
560
|
|
@@ -594,6 +590,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
594
590
|
output_cols = []
|
595
591
|
|
596
592
|
# Make sure column names are valid snowflake identifiers.
|
593
|
+
assert output_cols is not None # Make MyPy happy
|
597
594
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
598
595
|
|
599
596
|
return rv
|
@@ -604,11 +601,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
604
601
|
subproject=_SUBPROJECT,
|
605
602
|
custom_tags=dict([("autogen", True)]),
|
606
603
|
)
|
607
|
-
@telemetry.add_stmt_params_to_df(
|
608
|
-
project=_PROJECT,
|
609
|
-
subproject=_SUBPROJECT,
|
610
|
-
custom_tags=dict([("autogen", True)]),
|
611
|
-
)
|
612
604
|
def predict_proba(
|
613
605
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
614
606
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -649,11 +641,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
649
641
|
subproject=_SUBPROJECT,
|
650
642
|
custom_tags=dict([("autogen", True)]),
|
651
643
|
)
|
652
|
-
@telemetry.add_stmt_params_to_df(
|
653
|
-
project=_PROJECT,
|
654
|
-
subproject=_SUBPROJECT,
|
655
|
-
custom_tags=dict([("autogen", True)]),
|
656
|
-
)
|
657
644
|
def predict_log_proba(
|
658
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
659
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -690,16 +677,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
690
677
|
return output_df
|
691
678
|
|
692
679
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
693
|
-
@telemetry.send_api_usage_telemetry(
|
694
|
-
project=_PROJECT,
|
695
|
-
subproject=_SUBPROJECT,
|
696
|
-
custom_tags=dict([("autogen", True)]),
|
697
|
-
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
680
|
def decision_function(
|
704
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
705
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -802,11 +779,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
802
779
|
subproject=_SUBPROJECT,
|
803
780
|
custom_tags=dict([("autogen", True)]),
|
804
781
|
)
|
805
|
-
@telemetry.add_stmt_params_to_df(
|
806
|
-
project=_PROJECT,
|
807
|
-
subproject=_SUBPROJECT,
|
808
|
-
custom_tags=dict([("autogen", True)]),
|
809
|
-
)
|
810
782
|
def kneighbors(
|
811
783
|
self,
|
812
784
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -866,9 +838,9 @@ class OneVsOneClassifier(BaseTransformer):
|
|
866
838
|
# For classifier, the type of predict is the same as the type of label
|
867
839
|
if self._sklearn_object._estimator_type == 'classifier':
|
868
840
|
# label columns is the desired type for output
|
869
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
841
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
870
842
|
# rename the output columns
|
871
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
843
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
872
844
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
873
845
|
([] if self._drop_input_cols else inputs)
|
874
846
|
+ outputs)
|