snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class GenericUnivariateSelect(BaseTransformer):
|
58
59
|
r"""Univariate feature selector with configurable strategy
|
59
60
|
For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
|
@@ -61,52 +62,61 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
64
|
-
score_func: callable, default=f_classif
|
65
|
-
Function taking two arrays X and y, and returning a pair of arrays
|
66
|
-
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
|
67
|
-
a single array scores.
|
68
|
-
|
69
|
-
mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
|
70
|
-
Feature selection mode.
|
71
|
-
|
72
|
-
param: "all", float or int, default=1e-5
|
73
|
-
Parameter of the corresponding mode.
|
74
65
|
|
75
66
|
input_cols: Optional[Union[str, List[str]]]
|
76
67
|
A string or list of strings representing column names that contain features.
|
77
68
|
If this parameter is not specified, all columns in the input DataFrame except
|
78
69
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
79
|
-
parameters are considered input columns.
|
80
|
-
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
81
73
|
label_cols: Optional[Union[str, List[str]]]
|
82
74
|
A string or list of strings representing column names that contain labels.
|
83
|
-
|
84
|
-
|
85
|
-
labels (like a transformer).
|
75
|
+
Label columns must be specified with this parameter during initialization
|
76
|
+
or with the `set_label_cols` method before fitting.
|
86
77
|
|
87
78
|
output_cols: Optional[Union[str, List[str]]]
|
88
79
|
A string or list of strings representing column names that will store the
|
89
80
|
output of predict and transform operations. The length of output_cols must
|
90
|
-
match the expected number of output columns from the specific
|
81
|
+
match the expected number of output columns from the specific predictor or
|
91
82
|
transformer class used.
|
92
|
-
If this parameter
|
93
|
-
|
94
|
-
|
95
|
-
be set explicitly for transformers.
|
83
|
+
If you omit this parameter, output column names are derived by adding an
|
84
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
85
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
86
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
87
|
+
In general, explicitly specifying output column names is clearer, especially
|
88
|
+
if you don’t specify the input column names.
|
89
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
90
|
+
be set explicitly for transformers. Output columns can also be set after
|
91
|
+
initialization with the `set_output_cols` method.
|
96
92
|
|
97
93
|
sample_weight_col: Optional[str]
|
98
94
|
A string representing the column name containing the sample weights.
|
99
|
-
This argument is only required when working with weighted datasets.
|
95
|
+
This argument is only required when working with weighted datasets. Sample
|
96
|
+
weight column can also be set after initialization with the
|
97
|
+
`set_sample_weight_col` method.
|
100
98
|
|
101
99
|
passthrough_cols: Optional[Union[str, List[str]]]
|
102
100
|
A string or a list of strings indicating column names to be excluded from any
|
103
101
|
operations (such as train, transform, or inference). These specified column(s)
|
104
102
|
will remain untouched throughout the process. This option is helpful in scenarios
|
105
103
|
requiring automatic input_cols inference, but need to avoid using specific
|
106
|
-
columns, like index columns, during training or inference.
|
104
|
+
columns, like index columns, during training or inference. Passthrough columns
|
105
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
107
106
|
|
108
107
|
drop_input_cols: Optional[bool], default=False
|
109
108
|
If set, the response of predict(), transform() methods will not contain input columns.
|
109
|
+
|
110
|
+
score_func: callable, default=f_classif
|
111
|
+
Function taking two arrays X and y, and returning a pair of arrays
|
112
|
+
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
|
113
|
+
a single array scores.
|
114
|
+
|
115
|
+
mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
|
116
|
+
Feature selection mode.
|
117
|
+
|
118
|
+
param: "all", float or int, default=1e-5
|
119
|
+
Parameter of the corresponding mode.
|
110
120
|
"""
|
111
121
|
|
112
122
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -130,7 +140,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
130
140
|
self.set_passthrough_cols(passthrough_cols)
|
131
141
|
self.set_drop_input_cols(drop_input_cols)
|
132
142
|
self.set_sample_weight_col(sample_weight_col)
|
133
|
-
deps = set(
|
143
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
134
144
|
|
135
145
|
self._deps = list(deps)
|
136
146
|
|
@@ -141,13 +151,14 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
141
151
|
args=init_args,
|
142
152
|
klass=sklearn.feature_selection.GenericUnivariateSelect
|
143
153
|
)
|
144
|
-
self._sklearn_object = sklearn.feature_selection.GenericUnivariateSelect(
|
154
|
+
self._sklearn_object: Any = sklearn.feature_selection.GenericUnivariateSelect(
|
145
155
|
**cleaned_up_init_args,
|
146
156
|
)
|
147
157
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
148
158
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
149
159
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
150
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
160
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
161
|
+
self._autogenerated = True
|
151
162
|
|
152
163
|
def _get_rand_id(self) -> str:
|
153
164
|
"""
|
@@ -203,54 +214,48 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
203
214
|
self
|
204
215
|
"""
|
205
216
|
self._infer_input_output_cols(dataset)
|
206
|
-
if isinstance(dataset,
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
self.
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
217
|
+
if isinstance(dataset, DataFrame):
|
218
|
+
session = dataset._session
|
219
|
+
assert session is not None # keep mypy happy
|
220
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
221
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
222
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
223
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
224
|
+
|
225
|
+
# Specify input columns so column pruning will be enforced
|
226
|
+
selected_cols = self._get_active_columns()
|
227
|
+
if len(selected_cols) > 0:
|
228
|
+
dataset = dataset.select(selected_cols)
|
229
|
+
|
230
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
231
|
+
|
232
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
233
|
+
if SNOWML_SPROC_ENV in os.environ:
|
234
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
235
|
+
project=_PROJECT,
|
236
|
+
subproject=_SUBPROJECT,
|
237
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GenericUnivariateSelect.__class__.__name__),
|
238
|
+
api_calls=[Session.call],
|
239
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
240
|
+
)
|
241
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
242
|
+
pd_df.columns = dataset.columns
|
243
|
+
dataset = pd_df
|
244
|
+
|
245
|
+
model_trainer = ModelTrainerBuilder.build(
|
246
|
+
estimator=self._sklearn_object,
|
247
|
+
dataset=dataset,
|
248
|
+
input_cols=self.input_cols,
|
249
|
+
label_cols=self.label_cols,
|
250
|
+
sample_weight_col=self.sample_weight_col,
|
251
|
+
autogenerated=self._autogenerated,
|
252
|
+
subproject=_SUBPROJECT
|
253
|
+
)
|
254
|
+
self._sklearn_object = model_trainer.train()
|
222
255
|
self._is_fitted = True
|
223
256
|
self._get_model_signatures(dataset)
|
224
257
|
return self
|
225
258
|
|
226
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
227
|
-
session = dataset._session
|
228
|
-
assert session is not None # keep mypy happy
|
229
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
230
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
231
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
232
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
233
|
-
|
234
|
-
# Specify input columns so column pruning will be enforced
|
235
|
-
selected_cols = self._get_active_columns()
|
236
|
-
if len(selected_cols) > 0:
|
237
|
-
dataset = dataset.select(selected_cols)
|
238
|
-
|
239
|
-
estimator = self._sklearn_object
|
240
|
-
assert estimator is not None # Keep mypy happy
|
241
|
-
|
242
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
|
-
|
244
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
245
|
-
dataset,
|
246
|
-
session,
|
247
|
-
estimator,
|
248
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
249
|
-
self.input_cols,
|
250
|
-
self.label_cols,
|
251
|
-
self.sample_weight_col,
|
252
|
-
)
|
253
|
-
|
254
259
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
255
260
|
if self._drop_input_cols:
|
256
261
|
return []
|
@@ -438,11 +443,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
438
443
|
subproject=_SUBPROJECT,
|
439
444
|
custom_tags=dict([("autogen", True)]),
|
440
445
|
)
|
441
|
-
@telemetry.add_stmt_params_to_df(
|
442
|
-
project=_PROJECT,
|
443
|
-
subproject=_SUBPROJECT,
|
444
|
-
custom_tags=dict([("autogen", True)]),
|
445
|
-
)
|
446
446
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
447
447
|
"""Method not supported for this class.
|
448
448
|
|
@@ -494,11 +494,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
494
494
|
subproject=_SUBPROJECT,
|
495
495
|
custom_tags=dict([("autogen", True)]),
|
496
496
|
)
|
497
|
-
@telemetry.add_stmt_params_to_df(
|
498
|
-
project=_PROJECT,
|
499
|
-
subproject=_SUBPROJECT,
|
500
|
-
custom_tags=dict([("autogen", True)]),
|
501
|
-
)
|
502
497
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
503
498
|
"""Reduce X to the selected features
|
504
499
|
For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.transform]
|
@@ -557,7 +552,8 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
557
552
|
if False:
|
558
553
|
self.fit(dataset)
|
559
554
|
assert self._sklearn_object is not None
|
560
|
-
|
555
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
556
|
+
return labels
|
561
557
|
else:
|
562
558
|
raise NotImplementedError
|
563
559
|
|
@@ -593,6 +589,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
593
589
|
output_cols = []
|
594
590
|
|
595
591
|
# Make sure column names are valid snowflake identifiers.
|
592
|
+
assert output_cols is not None # Make MyPy happy
|
596
593
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
597
594
|
|
598
595
|
return rv
|
@@ -603,11 +600,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
603
600
|
subproject=_SUBPROJECT,
|
604
601
|
custom_tags=dict([("autogen", True)]),
|
605
602
|
)
|
606
|
-
@telemetry.add_stmt_params_to_df(
|
607
|
-
project=_PROJECT,
|
608
|
-
subproject=_SUBPROJECT,
|
609
|
-
custom_tags=dict([("autogen", True)]),
|
610
|
-
)
|
611
603
|
def predict_proba(
|
612
604
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
613
605
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -648,11 +640,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
648
640
|
subproject=_SUBPROJECT,
|
649
641
|
custom_tags=dict([("autogen", True)]),
|
650
642
|
)
|
651
|
-
@telemetry.add_stmt_params_to_df(
|
652
|
-
project=_PROJECT,
|
653
|
-
subproject=_SUBPROJECT,
|
654
|
-
custom_tags=dict([("autogen", True)]),
|
655
|
-
)
|
656
643
|
def predict_log_proba(
|
657
644
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
658
645
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -689,16 +676,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
689
676
|
return output_df
|
690
677
|
|
691
678
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
692
|
-
@telemetry.send_api_usage_telemetry(
|
693
|
-
project=_PROJECT,
|
694
|
-
subproject=_SUBPROJECT,
|
695
|
-
custom_tags=dict([("autogen", True)]),
|
696
|
-
)
|
697
|
-
@telemetry.add_stmt_params_to_df(
|
698
|
-
project=_PROJECT,
|
699
|
-
subproject=_SUBPROJECT,
|
700
|
-
custom_tags=dict([("autogen", True)]),
|
701
|
-
)
|
702
679
|
def decision_function(
|
703
680
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
704
681
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -797,11 +774,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
797
774
|
subproject=_SUBPROJECT,
|
798
775
|
custom_tags=dict([("autogen", True)]),
|
799
776
|
)
|
800
|
-
@telemetry.add_stmt_params_to_df(
|
801
|
-
project=_PROJECT,
|
802
|
-
subproject=_SUBPROJECT,
|
803
|
-
custom_tags=dict([("autogen", True)]),
|
804
|
-
)
|
805
777
|
def kneighbors(
|
806
778
|
self,
|
807
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -861,9 +833,9 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
861
833
|
# For classifier, the type of predict is the same as the type of label
|
862
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
863
835
|
# label columns is the desired type for output
|
864
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
865
837
|
# rename the output columns
|
866
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
867
839
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
868
840
|
([] if self._drop_input_cols else inputs)
|
869
841
|
+ outputs)
|
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class SelectFdr(BaseTransformer):
|
58
59
|
r"""Filter: Select the p-values for an estimated false discovery rate
|
59
60
|
For more details on this class, see [sklearn.feature_selection.SelectFdr]
|
@@ -61,50 +62,59 @@ class SelectFdr(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
64
|
-
score_func: callable, default=f_classif
|
65
|
-
Function taking two arrays X and y, and returning a pair of arrays
|
66
|
-
(scores, pvalues).
|
67
|
-
Default is f_classif (see below "See Also"). The default function only
|
68
|
-
works with classification tasks.
|
69
|
-
|
70
|
-
alpha: float, default=5e-2
|
71
|
-
The highest uncorrected p-value for features to keep.
|
72
65
|
|
73
66
|
input_cols: Optional[Union[str, List[str]]]
|
74
67
|
A string or list of strings representing column names that contain features.
|
75
68
|
If this parameter is not specified, all columns in the input DataFrame except
|
76
69
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
77
|
-
parameters are considered input columns.
|
78
|
-
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
79
73
|
label_cols: Optional[Union[str, List[str]]]
|
80
74
|
A string or list of strings representing column names that contain labels.
|
81
|
-
|
82
|
-
|
83
|
-
labels (like a transformer).
|
75
|
+
Label columns must be specified with this parameter during initialization
|
76
|
+
or with the `set_label_cols` method before fitting.
|
84
77
|
|
85
78
|
output_cols: Optional[Union[str, List[str]]]
|
86
79
|
A string or list of strings representing column names that will store the
|
87
80
|
output of predict and transform operations. The length of output_cols must
|
88
|
-
match the expected number of output columns from the specific
|
81
|
+
match the expected number of output columns from the specific predictor or
|
89
82
|
transformer class used.
|
90
|
-
If this parameter
|
91
|
-
|
92
|
-
|
93
|
-
be set explicitly for transformers.
|
83
|
+
If you omit this parameter, output column names are derived by adding an
|
84
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
85
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
86
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
87
|
+
In general, explicitly specifying output column names is clearer, especially
|
88
|
+
if you don’t specify the input column names.
|
89
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
90
|
+
be set explicitly for transformers. Output columns can also be set after
|
91
|
+
initialization with the `set_output_cols` method.
|
94
92
|
|
95
93
|
sample_weight_col: Optional[str]
|
96
94
|
A string representing the column name containing the sample weights.
|
97
|
-
This argument is only required when working with weighted datasets.
|
95
|
+
This argument is only required when working with weighted datasets. Sample
|
96
|
+
weight column can also be set after initialization with the
|
97
|
+
`set_sample_weight_col` method.
|
98
98
|
|
99
99
|
passthrough_cols: Optional[Union[str, List[str]]]
|
100
100
|
A string or a list of strings indicating column names to be excluded from any
|
101
101
|
operations (such as train, transform, or inference). These specified column(s)
|
102
102
|
will remain untouched throughout the process. This option is helpful in scenarios
|
103
103
|
requiring automatic input_cols inference, but need to avoid using specific
|
104
|
-
columns, like index columns, during training or inference.
|
104
|
+
columns, like index columns, during training or inference. Passthrough columns
|
105
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
106
|
|
106
107
|
drop_input_cols: Optional[bool], default=False
|
107
108
|
If set, the response of predict(), transform() methods will not contain input columns.
|
109
|
+
|
110
|
+
score_func: callable, default=f_classif
|
111
|
+
Function taking two arrays X and y, and returning a pair of arrays
|
112
|
+
(scores, pvalues).
|
113
|
+
Default is f_classif (see below "See Also"). The default function only
|
114
|
+
works with classification tasks.
|
115
|
+
|
116
|
+
alpha: float, default=5e-2
|
117
|
+
The highest uncorrected p-value for features to keep.
|
108
118
|
"""
|
109
119
|
|
110
120
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -127,7 +137,7 @@ class SelectFdr(BaseTransformer):
|
|
127
137
|
self.set_passthrough_cols(passthrough_cols)
|
128
138
|
self.set_drop_input_cols(drop_input_cols)
|
129
139
|
self.set_sample_weight_col(sample_weight_col)
|
130
|
-
deps = set(
|
140
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
131
141
|
|
132
142
|
self._deps = list(deps)
|
133
143
|
|
@@ -137,13 +147,14 @@ class SelectFdr(BaseTransformer):
|
|
137
147
|
args=init_args,
|
138
148
|
klass=sklearn.feature_selection.SelectFdr
|
139
149
|
)
|
140
|
-
self._sklearn_object = sklearn.feature_selection.SelectFdr(
|
150
|
+
self._sklearn_object: Any = sklearn.feature_selection.SelectFdr(
|
141
151
|
**cleaned_up_init_args,
|
142
152
|
)
|
143
153
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
144
154
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
145
155
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
146
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFdr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
156
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFdr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
157
|
+
self._autogenerated = True
|
147
158
|
|
148
159
|
def _get_rand_id(self) -> str:
|
149
160
|
"""
|
@@ -199,54 +210,48 @@ class SelectFdr(BaseTransformer):
|
|
199
210
|
self
|
200
211
|
"""
|
201
212
|
self._infer_input_output_cols(dataset)
|
202
|
-
if isinstance(dataset,
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
self.
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
213
|
+
if isinstance(dataset, DataFrame):
|
214
|
+
session = dataset._session
|
215
|
+
assert session is not None # keep mypy happy
|
216
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
217
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
218
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
219
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
220
|
+
|
221
|
+
# Specify input columns so column pruning will be enforced
|
222
|
+
selected_cols = self._get_active_columns()
|
223
|
+
if len(selected_cols) > 0:
|
224
|
+
dataset = dataset.select(selected_cols)
|
225
|
+
|
226
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
227
|
+
|
228
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
229
|
+
if SNOWML_SPROC_ENV in os.environ:
|
230
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
231
|
+
project=_PROJECT,
|
232
|
+
subproject=_SUBPROJECT,
|
233
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectFdr.__class__.__name__),
|
234
|
+
api_calls=[Session.call],
|
235
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
236
|
+
)
|
237
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
238
|
+
pd_df.columns = dataset.columns
|
239
|
+
dataset = pd_df
|
240
|
+
|
241
|
+
model_trainer = ModelTrainerBuilder.build(
|
242
|
+
estimator=self._sklearn_object,
|
243
|
+
dataset=dataset,
|
244
|
+
input_cols=self.input_cols,
|
245
|
+
label_cols=self.label_cols,
|
246
|
+
sample_weight_col=self.sample_weight_col,
|
247
|
+
autogenerated=self._autogenerated,
|
248
|
+
subproject=_SUBPROJECT
|
249
|
+
)
|
250
|
+
self._sklearn_object = model_trainer.train()
|
218
251
|
self._is_fitted = True
|
219
252
|
self._get_model_signatures(dataset)
|
220
253
|
return self
|
221
254
|
|
222
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
223
|
-
session = dataset._session
|
224
|
-
assert session is not None # keep mypy happy
|
225
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
226
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
227
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
228
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
229
|
-
|
230
|
-
# Specify input columns so column pruning will be enforced
|
231
|
-
selected_cols = self._get_active_columns()
|
232
|
-
if len(selected_cols) > 0:
|
233
|
-
dataset = dataset.select(selected_cols)
|
234
|
-
|
235
|
-
estimator = self._sklearn_object
|
236
|
-
assert estimator is not None # Keep mypy happy
|
237
|
-
|
238
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
239
|
-
|
240
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
241
|
-
dataset,
|
242
|
-
session,
|
243
|
-
estimator,
|
244
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
245
|
-
self.input_cols,
|
246
|
-
self.label_cols,
|
247
|
-
self.sample_weight_col,
|
248
|
-
)
|
249
|
-
|
250
255
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
251
256
|
if self._drop_input_cols:
|
252
257
|
return []
|
@@ -434,11 +439,6 @@ class SelectFdr(BaseTransformer):
|
|
434
439
|
subproject=_SUBPROJECT,
|
435
440
|
custom_tags=dict([("autogen", True)]),
|
436
441
|
)
|
437
|
-
@telemetry.add_stmt_params_to_df(
|
438
|
-
project=_PROJECT,
|
439
|
-
subproject=_SUBPROJECT,
|
440
|
-
custom_tags=dict([("autogen", True)]),
|
441
|
-
)
|
442
442
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
443
443
|
"""Method not supported for this class.
|
444
444
|
|
@@ -490,11 +490,6 @@ class SelectFdr(BaseTransformer):
|
|
490
490
|
subproject=_SUBPROJECT,
|
491
491
|
custom_tags=dict([("autogen", True)]),
|
492
492
|
)
|
493
|
-
@telemetry.add_stmt_params_to_df(
|
494
|
-
project=_PROJECT,
|
495
|
-
subproject=_SUBPROJECT,
|
496
|
-
custom_tags=dict([("autogen", True)]),
|
497
|
-
)
|
498
493
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
499
494
|
"""Reduce X to the selected features
|
500
495
|
For more details on this function, see [sklearn.feature_selection.SelectFdr.transform]
|
@@ -553,7 +548,8 @@ class SelectFdr(BaseTransformer):
|
|
553
548
|
if False:
|
554
549
|
self.fit(dataset)
|
555
550
|
assert self._sklearn_object is not None
|
556
|
-
|
551
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
552
|
+
return labels
|
557
553
|
else:
|
558
554
|
raise NotImplementedError
|
559
555
|
|
@@ -589,6 +585,7 @@ class SelectFdr(BaseTransformer):
|
|
589
585
|
output_cols = []
|
590
586
|
|
591
587
|
# Make sure column names are valid snowflake identifiers.
|
588
|
+
assert output_cols is not None # Make MyPy happy
|
592
589
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
593
590
|
|
594
591
|
return rv
|
@@ -599,11 +596,6 @@ class SelectFdr(BaseTransformer):
|
|
599
596
|
subproject=_SUBPROJECT,
|
600
597
|
custom_tags=dict([("autogen", True)]),
|
601
598
|
)
|
602
|
-
@telemetry.add_stmt_params_to_df(
|
603
|
-
project=_PROJECT,
|
604
|
-
subproject=_SUBPROJECT,
|
605
|
-
custom_tags=dict([("autogen", True)]),
|
606
|
-
)
|
607
599
|
def predict_proba(
|
608
600
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
609
601
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -644,11 +636,6 @@ class SelectFdr(BaseTransformer):
|
|
644
636
|
subproject=_SUBPROJECT,
|
645
637
|
custom_tags=dict([("autogen", True)]),
|
646
638
|
)
|
647
|
-
@telemetry.add_stmt_params_to_df(
|
648
|
-
project=_PROJECT,
|
649
|
-
subproject=_SUBPROJECT,
|
650
|
-
custom_tags=dict([("autogen", True)]),
|
651
|
-
)
|
652
639
|
def predict_log_proba(
|
653
640
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
654
641
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -685,16 +672,6 @@ class SelectFdr(BaseTransformer):
|
|
685
672
|
return output_df
|
686
673
|
|
687
674
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
688
|
-
@telemetry.send_api_usage_telemetry(
|
689
|
-
project=_PROJECT,
|
690
|
-
subproject=_SUBPROJECT,
|
691
|
-
custom_tags=dict([("autogen", True)]),
|
692
|
-
)
|
693
|
-
@telemetry.add_stmt_params_to_df(
|
694
|
-
project=_PROJECT,
|
695
|
-
subproject=_SUBPROJECT,
|
696
|
-
custom_tags=dict([("autogen", True)]),
|
697
|
-
)
|
698
675
|
def decision_function(
|
699
676
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
700
677
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -793,11 +770,6 @@ class SelectFdr(BaseTransformer):
|
|
793
770
|
subproject=_SUBPROJECT,
|
794
771
|
custom_tags=dict([("autogen", True)]),
|
795
772
|
)
|
796
|
-
@telemetry.add_stmt_params_to_df(
|
797
|
-
project=_PROJECT,
|
798
|
-
subproject=_SUBPROJECT,
|
799
|
-
custom_tags=dict([("autogen", True)]),
|
800
|
-
)
|
801
773
|
def kneighbors(
|
802
774
|
self,
|
803
775
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -857,9 +829,9 @@ class SelectFdr(BaseTransformer):
|
|
857
829
|
# For classifier, the type of predict is the same as the type of label
|
858
830
|
if self._sklearn_object._estimator_type == 'classifier':
|
859
831
|
# label columns is the desired type for output
|
860
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
832
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
861
833
|
# rename the output columns
|
862
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
834
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
863
835
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
864
836
|
([] if self._drop_input_cols else inputs)
|
865
837
|
+ outputs)
|