snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class VotingRegressor(BaseTransformer):
|
57
58
|
r"""Prediction voting regressor for unfitted estimators
|
58
59
|
For more details on this class, see [sklearn.ensemble.VotingRegressor]
|
@@ -60,61 +61,70 @@ class VotingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
estimators: list of (str, estimator) tuples
|
64
|
-
Invoking the ``fit`` method on the ``VotingRegressor`` will fit clones
|
65
|
-
of those original estimators that will be stored in the class attribute
|
66
|
-
``self.estimators_``. An estimator can be set to ``'drop'`` using
|
67
|
-
:meth:`set_params`.
|
68
|
-
|
69
|
-
weights: array-like of shape (n_regressors,), default=None
|
70
|
-
Sequence of weights (`float` or `int`) to weight the occurrences of
|
71
|
-
predicted values before averaging. Uses uniform weights if `None`.
|
72
|
-
|
73
|
-
n_jobs: int, default=None
|
74
|
-
The number of jobs to run in parallel for ``fit``.
|
75
|
-
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
76
|
-
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
77
|
-
for more details.
|
78
|
-
|
79
|
-
verbose: bool, default=False
|
80
|
-
If True, the time elapsed while fitting will be printed as it
|
81
|
-
is completed.
|
82
64
|
|
83
65
|
input_cols: Optional[Union[str, List[str]]]
|
84
66
|
A string or list of strings representing column names that contain features.
|
85
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
86
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
87
|
-
parameters are considered input columns.
|
88
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
89
72
|
label_cols: Optional[Union[str, List[str]]]
|
90
73
|
A string or list of strings representing column names that contain labels.
|
91
|
-
|
92
|
-
|
93
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
94
76
|
|
95
77
|
output_cols: Optional[Union[str, List[str]]]
|
96
78
|
A string or list of strings representing column names that will store the
|
97
79
|
output of predict and transform operations. The length of output_cols must
|
98
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
99
81
|
transformer class used.
|
100
|
-
If this parameter
|
101
|
-
|
102
|
-
|
103
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
104
91
|
|
105
92
|
sample_weight_col: Optional[str]
|
106
93
|
A string representing the column name containing the sample weights.
|
107
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
108
97
|
|
109
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
110
99
|
A string or a list of strings indicating column names to be excluded from any
|
111
100
|
operations (such as train, transform, or inference). These specified column(s)
|
112
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
113
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
114
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
115
105
|
|
116
106
|
drop_input_cols: Optional[bool], default=False
|
117
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
estimators: list of (str, estimator) tuples
|
110
|
+
Invoking the ``fit`` method on the ``VotingRegressor`` will fit clones
|
111
|
+
of those original estimators that will be stored in the class attribute
|
112
|
+
``self.estimators_``. An estimator can be set to ``'drop'`` using
|
113
|
+
:meth:`set_params`.
|
114
|
+
|
115
|
+
weights: array-like of shape (n_regressors,), default=None
|
116
|
+
Sequence of weights (`float` or `int`) to weight the occurrences of
|
117
|
+
predicted values before averaging. Uses uniform weights if `None`.
|
118
|
+
|
119
|
+
n_jobs: int, default=None
|
120
|
+
The number of jobs to run in parallel for ``fit``.
|
121
|
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
122
|
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
123
|
+
for more details.
|
124
|
+
|
125
|
+
verbose: bool, default=False
|
126
|
+
If True, the time elapsed while fitting will be printed as it
|
127
|
+
is completed.
|
118
128
|
"""
|
119
129
|
|
120
130
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -139,7 +149,7 @@ class VotingRegressor(BaseTransformer):
|
|
139
149
|
self.set_passthrough_cols(passthrough_cols)
|
140
150
|
self.set_drop_input_cols(drop_input_cols)
|
141
151
|
self.set_sample_weight_col(sample_weight_col)
|
142
|
-
deps = set(
|
152
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
143
153
|
deps = deps | gather_dependencies(estimators)
|
144
154
|
self._deps = list(deps)
|
145
155
|
estimators = transform_snowml_obj_to_sklearn_obj(estimators)
|
@@ -151,13 +161,14 @@ class VotingRegressor(BaseTransformer):
|
|
151
161
|
args=init_args,
|
152
162
|
klass=sklearn.ensemble.VotingRegressor
|
153
163
|
)
|
154
|
-
self._sklearn_object = sklearn.ensemble.VotingRegressor(
|
164
|
+
self._sklearn_object: Any = sklearn.ensemble.VotingRegressor(
|
155
165
|
**cleaned_up_init_args,
|
156
166
|
)
|
157
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
158
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
159
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
160
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
170
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
|
+
self._autogenerated = True
|
161
172
|
|
162
173
|
def _get_rand_id(self) -> str:
|
163
174
|
"""
|
@@ -213,54 +224,48 @@ class VotingRegressor(BaseTransformer):
|
|
213
224
|
self
|
214
225
|
"""
|
215
226
|
self._infer_input_output_cols(dataset)
|
216
|
-
if isinstance(dataset,
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
self.
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
227
|
+
if isinstance(dataset, DataFrame):
|
228
|
+
session = dataset._session
|
229
|
+
assert session is not None # keep mypy happy
|
230
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
+
|
235
|
+
# Specify input columns so column pruning will be enforced
|
236
|
+
selected_cols = self._get_active_columns()
|
237
|
+
if len(selected_cols) > 0:
|
238
|
+
dataset = dataset.select(selected_cols)
|
239
|
+
|
240
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
+
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
243
|
+
if SNOWML_SPROC_ENV in os.environ:
|
244
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
245
|
+
project=_PROJECT,
|
246
|
+
subproject=_SUBPROJECT,
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingRegressor.__class__.__name__),
|
248
|
+
api_calls=[Session.call],
|
249
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
250
|
+
)
|
251
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
252
|
+
pd_df.columns = dataset.columns
|
253
|
+
dataset = pd_df
|
254
|
+
|
255
|
+
model_trainer = ModelTrainerBuilder.build(
|
256
|
+
estimator=self._sklearn_object,
|
257
|
+
dataset=dataset,
|
258
|
+
input_cols=self.input_cols,
|
259
|
+
label_cols=self.label_cols,
|
260
|
+
sample_weight_col=self.sample_weight_col,
|
261
|
+
autogenerated=self._autogenerated,
|
262
|
+
subproject=_SUBPROJECT
|
263
|
+
)
|
264
|
+
self._sklearn_object = model_trainer.train()
|
232
265
|
self._is_fitted = True
|
233
266
|
self._get_model_signatures(dataset)
|
234
267
|
return self
|
235
268
|
|
236
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
237
|
-
session = dataset._session
|
238
|
-
assert session is not None # keep mypy happy
|
239
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
-
|
244
|
-
# Specify input columns so column pruning will be enforced
|
245
|
-
selected_cols = self._get_active_columns()
|
246
|
-
if len(selected_cols) > 0:
|
247
|
-
dataset = dataset.select(selected_cols)
|
248
|
-
|
249
|
-
estimator = self._sklearn_object
|
250
|
-
assert estimator is not None # Keep mypy happy
|
251
|
-
|
252
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
-
|
254
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
255
|
-
dataset,
|
256
|
-
session,
|
257
|
-
estimator,
|
258
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
259
|
-
self.input_cols,
|
260
|
-
self.label_cols,
|
261
|
-
self.sample_weight_col,
|
262
|
-
)
|
263
|
-
|
264
269
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
265
270
|
if self._drop_input_cols:
|
266
271
|
return []
|
@@ -448,11 +453,6 @@ class VotingRegressor(BaseTransformer):
|
|
448
453
|
subproject=_SUBPROJECT,
|
449
454
|
custom_tags=dict([("autogen", True)]),
|
450
455
|
)
|
451
|
-
@telemetry.add_stmt_params_to_df(
|
452
|
-
project=_PROJECT,
|
453
|
-
subproject=_SUBPROJECT,
|
454
|
-
custom_tags=dict([("autogen", True)]),
|
455
|
-
)
|
456
456
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
457
457
|
"""Predict regression target for X
|
458
458
|
For more details on this function, see [sklearn.ensemble.VotingRegressor.predict]
|
@@ -506,11 +506,6 @@ class VotingRegressor(BaseTransformer):
|
|
506
506
|
subproject=_SUBPROJECT,
|
507
507
|
custom_tags=dict([("autogen", True)]),
|
508
508
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
510
|
"""Return predictions for X for each estimator
|
516
511
|
For more details on this function, see [sklearn.ensemble.VotingRegressor.transform]
|
@@ -569,7 +564,8 @@ class VotingRegressor(BaseTransformer):
|
|
569
564
|
if False:
|
570
565
|
self.fit(dataset)
|
571
566
|
assert self._sklearn_object is not None
|
572
|
-
|
567
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
568
|
+
return labels
|
573
569
|
else:
|
574
570
|
raise NotImplementedError
|
575
571
|
|
@@ -605,6 +601,7 @@ class VotingRegressor(BaseTransformer):
|
|
605
601
|
output_cols = []
|
606
602
|
|
607
603
|
# Make sure column names are valid snowflake identifiers.
|
604
|
+
assert output_cols is not None # Make MyPy happy
|
608
605
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
609
606
|
|
610
607
|
return rv
|
@@ -615,11 +612,6 @@ class VotingRegressor(BaseTransformer):
|
|
615
612
|
subproject=_SUBPROJECT,
|
616
613
|
custom_tags=dict([("autogen", True)]),
|
617
614
|
)
|
618
|
-
@telemetry.add_stmt_params_to_df(
|
619
|
-
project=_PROJECT,
|
620
|
-
subproject=_SUBPROJECT,
|
621
|
-
custom_tags=dict([("autogen", True)]),
|
622
|
-
)
|
623
615
|
def predict_proba(
|
624
616
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
625
617
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -660,11 +652,6 @@ class VotingRegressor(BaseTransformer):
|
|
660
652
|
subproject=_SUBPROJECT,
|
661
653
|
custom_tags=dict([("autogen", True)]),
|
662
654
|
)
|
663
|
-
@telemetry.add_stmt_params_to_df(
|
664
|
-
project=_PROJECT,
|
665
|
-
subproject=_SUBPROJECT,
|
666
|
-
custom_tags=dict([("autogen", True)]),
|
667
|
-
)
|
668
655
|
def predict_log_proba(
|
669
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
670
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -701,16 +688,6 @@ class VotingRegressor(BaseTransformer):
|
|
701
688
|
return output_df
|
702
689
|
|
703
690
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
704
|
-
@telemetry.send_api_usage_telemetry(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
|
-
@telemetry.add_stmt_params_to_df(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
691
|
def decision_function(
|
715
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
716
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,11 +788,6 @@ class VotingRegressor(BaseTransformer):
|
|
811
788
|
subproject=_SUBPROJECT,
|
812
789
|
custom_tags=dict([("autogen", True)]),
|
813
790
|
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
791
|
def kneighbors(
|
820
792
|
self,
|
821
793
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -875,9 +847,9 @@ class VotingRegressor(BaseTransformer):
|
|
875
847
|
# For classifier, the type of predict is the same as the type of label
|
876
848
|
if self._sklearn_object._estimator_type == 'classifier':
|
877
849
|
# label columns is the desired type for output
|
878
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
850
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
879
851
|
# rename the output columns
|
880
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
852
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
881
853
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
854
|
([] if self._drop_input_cols else inputs)
|
883
855
|
+ outputs)
|