snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LassoCV(BaseTransformer):
57
58
  r"""Lasso linear model with iterative fitting along a regularization path
58
59
  For more details on this class, see [sklearn.linear_model.LassoCV]
@@ -60,6 +61,51 @@ class LassoCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  eps: float, default=1e-3
64
110
  Length of the path. ``eps=1e-3`` means that
65
111
  ``alpha_min / alpha_max = 1e-3``.
@@ -130,42 +176,6 @@ class LassoCV(BaseTransformer):
130
176
  rather than looping over features sequentially by default. This
131
177
  (setting to 'random') often leads to significantly faster convergence
132
178
  especially when tol is higher than 1e-4.
133
-
134
- input_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain features.
136
- If this parameter is not specified, all columns in the input DataFrame except
137
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
138
- parameters are considered input columns.
139
-
140
- label_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that contain labels.
142
- This is a required param for estimators, as there is no way to infer these
143
- columns. If this parameter is not specified, then object is fitted without
144
- labels (like a transformer).
145
-
146
- output_cols: Optional[Union[str, List[str]]]
147
- A string or list of strings representing column names that will store the
148
- output of predict and transform operations. The length of output_cols must
149
- match the expected number of output columns from the specific estimator or
150
- transformer class used.
151
- If this parameter is not specified, output column names are derived by
152
- adding an OUTPUT_ prefix to the label column names. These inferred output
153
- column names work for estimator's predict() method, but output_cols must
154
- be set explicitly for transformers.
155
-
156
- sample_weight_col: Optional[str]
157
- A string representing the column name containing the sample weights.
158
- This argument is only required when working with weighted datasets.
159
-
160
- passthrough_cols: Optional[Union[str, List[str]]]
161
- A string or a list of strings indicating column names to be excluded from any
162
- operations (such as train, transform, or inference). These specified column(s)
163
- will remain untouched throughout the process. This option is helpful in scenarios
164
- requiring automatic input_cols inference, but need to avoid using specific
165
- columns, like index columns, during training or inference.
166
-
167
- drop_input_cols: Optional[bool], default=False
168
- If set, the response of predict(), transform() methods will not contain input columns.
169
179
  """
170
180
 
171
181
  def __init__( # type: ignore[no-untyped-def]
@@ -200,7 +210,7 @@ class LassoCV(BaseTransformer):
200
210
  self.set_passthrough_cols(passthrough_cols)
201
211
  self.set_drop_input_cols(drop_input_cols)
202
212
  self.set_sample_weight_col(sample_weight_col)
203
- deps = set(SklearnWrapperProvider().dependencies)
213
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
204
214
 
205
215
  self._deps = list(deps)
206
216
 
@@ -222,13 +232,14 @@ class LassoCV(BaseTransformer):
222
232
  args=init_args,
223
233
  klass=sklearn.linear_model.LassoCV
224
234
  )
225
- self._sklearn_object = sklearn.linear_model.LassoCV(
235
+ self._sklearn_object: Any = sklearn.linear_model.LassoCV(
226
236
  **cleaned_up_init_args,
227
237
  )
228
238
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
229
239
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
230
240
  self._snowpark_cols: Optional[List[str]] = self.input_cols
231
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
241
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
242
+ self._autogenerated = True
232
243
 
233
244
  def _get_rand_id(self) -> str:
234
245
  """
@@ -284,54 +295,48 @@ class LassoCV(BaseTransformer):
284
295
  self
285
296
  """
286
297
  self._infer_input_output_cols(dataset)
287
- if isinstance(dataset, pd.DataFrame):
288
- assert self._sklearn_object is not None # keep mypy happy
289
- self._sklearn_object = self._handlers.fit_pandas(
290
- dataset,
291
- self._sklearn_object,
292
- self.input_cols,
293
- self.label_cols,
294
- self.sample_weight_col
295
- )
296
- elif isinstance(dataset, DataFrame):
297
- self._fit_snowpark(dataset)
298
- else:
299
- raise TypeError(
300
- f"Unexpected dataset type: {type(dataset)}."
301
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
302
- )
298
+ if isinstance(dataset, DataFrame):
299
+ session = dataset._session
300
+ assert session is not None # keep mypy happy
301
+ # Validate that key package version in user workspace are supported in snowflake conda channel
302
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
303
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
304
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
305
+
306
+ # Specify input columns so column pruning will be enforced
307
+ selected_cols = self._get_active_columns()
308
+ if len(selected_cols) > 0:
309
+ dataset = dataset.select(selected_cols)
310
+
311
+ self._snowpark_cols = dataset.select(self.input_cols).columns
312
+
313
+ # If we are already in a stored procedure, no need to kick off another one.
314
+ if SNOWML_SPROC_ENV in os.environ:
315
+ statement_params = telemetry.get_function_usage_statement_params(
316
+ project=_PROJECT,
317
+ subproject=_SUBPROJECT,
318
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoCV.__class__.__name__),
319
+ api_calls=[Session.call],
320
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
321
+ )
322
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
323
+ pd_df.columns = dataset.columns
324
+ dataset = pd_df
325
+
326
+ model_trainer = ModelTrainerBuilder.build(
327
+ estimator=self._sklearn_object,
328
+ dataset=dataset,
329
+ input_cols=self.input_cols,
330
+ label_cols=self.label_cols,
331
+ sample_weight_col=self.sample_weight_col,
332
+ autogenerated=self._autogenerated,
333
+ subproject=_SUBPROJECT
334
+ )
335
+ self._sklearn_object = model_trainer.train()
303
336
  self._is_fitted = True
304
337
  self._get_model_signatures(dataset)
305
338
  return self
306
339
 
307
- def _fit_snowpark(self, dataset: DataFrame) -> None:
308
- session = dataset._session
309
- assert session is not None # keep mypy happy
310
- # Validate that key package version in user workspace are supported in snowflake conda channel
311
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
312
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
313
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
314
-
315
- # Specify input columns so column pruning will be enforced
316
- selected_cols = self._get_active_columns()
317
- if len(selected_cols) > 0:
318
- dataset = dataset.select(selected_cols)
319
-
320
- estimator = self._sklearn_object
321
- assert estimator is not None # Keep mypy happy
322
-
323
- self._snowpark_cols = dataset.select(self.input_cols).columns
324
-
325
- self._sklearn_object = self._handlers.fit_snowpark(
326
- dataset,
327
- session,
328
- estimator,
329
- ["snowflake-snowpark-python"] + self._get_dependencies(),
330
- self.input_cols,
331
- self.label_cols,
332
- self.sample_weight_col,
333
- )
334
-
335
340
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
336
341
  if self._drop_input_cols:
337
342
  return []
@@ -519,11 +524,6 @@ class LassoCV(BaseTransformer):
519
524
  subproject=_SUBPROJECT,
520
525
  custom_tags=dict([("autogen", True)]),
521
526
  )
522
- @telemetry.add_stmt_params_to_df(
523
- project=_PROJECT,
524
- subproject=_SUBPROJECT,
525
- custom_tags=dict([("autogen", True)]),
526
- )
527
527
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
528
528
  """Predict using the linear model
529
529
  For more details on this function, see [sklearn.linear_model.LassoCV.predict]
@@ -577,11 +577,6 @@ class LassoCV(BaseTransformer):
577
577
  subproject=_SUBPROJECT,
578
578
  custom_tags=dict([("autogen", True)]),
579
579
  )
580
- @telemetry.add_stmt_params_to_df(
581
- project=_PROJECT,
582
- subproject=_SUBPROJECT,
583
- custom_tags=dict([("autogen", True)]),
584
- )
585
580
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
586
581
  """Method not supported for this class.
587
582
 
@@ -638,7 +633,8 @@ class LassoCV(BaseTransformer):
638
633
  if False:
639
634
  self.fit(dataset)
640
635
  assert self._sklearn_object is not None
641
- return self._sklearn_object.labels_
636
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
637
+ return labels
642
638
  else:
643
639
  raise NotImplementedError
644
640
 
@@ -674,6 +670,7 @@ class LassoCV(BaseTransformer):
674
670
  output_cols = []
675
671
 
676
672
  # Make sure column names are valid snowflake identifiers.
673
+ assert output_cols is not None # Make MyPy happy
677
674
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
678
675
 
679
676
  return rv
@@ -684,11 +681,6 @@ class LassoCV(BaseTransformer):
684
681
  subproject=_SUBPROJECT,
685
682
  custom_tags=dict([("autogen", True)]),
686
683
  )
687
- @telemetry.add_stmt_params_to_df(
688
- project=_PROJECT,
689
- subproject=_SUBPROJECT,
690
- custom_tags=dict([("autogen", True)]),
691
- )
692
684
  def predict_proba(
693
685
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
694
686
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -729,11 +721,6 @@ class LassoCV(BaseTransformer):
729
721
  subproject=_SUBPROJECT,
730
722
  custom_tags=dict([("autogen", True)]),
731
723
  )
732
- @telemetry.add_stmt_params_to_df(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
724
  def predict_log_proba(
738
725
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
739
726
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -770,16 +757,6 @@ class LassoCV(BaseTransformer):
770
757
  return output_df
771
758
 
772
759
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
773
- @telemetry.send_api_usage_telemetry(
774
- project=_PROJECT,
775
- subproject=_SUBPROJECT,
776
- custom_tags=dict([("autogen", True)]),
777
- )
778
- @telemetry.add_stmt_params_to_df(
779
- project=_PROJECT,
780
- subproject=_SUBPROJECT,
781
- custom_tags=dict([("autogen", True)]),
782
- )
783
760
  def decision_function(
784
761
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
785
762
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -880,11 +857,6 @@ class LassoCV(BaseTransformer):
880
857
  subproject=_SUBPROJECT,
881
858
  custom_tags=dict([("autogen", True)]),
882
859
  )
883
- @telemetry.add_stmt_params_to_df(
884
- project=_PROJECT,
885
- subproject=_SUBPROJECT,
886
- custom_tags=dict([("autogen", True)]),
887
- )
888
860
  def kneighbors(
889
861
  self,
890
862
  dataset: Union[DataFrame, pd.DataFrame],
@@ -944,9 +916,9 @@ class LassoCV(BaseTransformer):
944
916
  # For classifier, the type of predict is the same as the type of label
945
917
  if self._sklearn_object._estimator_type == 'classifier':
946
918
  # label columns is the desired type for output
947
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
919
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
948
920
  # rename the output columns
949
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
921
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
950
922
  self._model_signature_dict["predict"] = ModelSignature(inputs,
951
923
  ([] if self._drop_input_cols else inputs)
952
924
  + outputs)