snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoCV(BaseTransformer):
|
57
58
|
r"""Lasso linear model with iterative fitting along a regularization path
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoCV]
|
@@ -60,6 +61,51 @@ class LassoCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
eps: float, default=1e-3
|
64
110
|
Length of the path. ``eps=1e-3`` means that
|
65
111
|
``alpha_min / alpha_max = 1e-3``.
|
@@ -130,42 +176,6 @@ class LassoCV(BaseTransformer):
|
|
130
176
|
rather than looping over features sequentially by default. This
|
131
177
|
(setting to 'random') often leads to significantly faster convergence
|
132
178
|
especially when tol is higher than 1e-4.
|
133
|
-
|
134
|
-
input_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain features.
|
136
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
137
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
138
|
-
parameters are considered input columns.
|
139
|
-
|
140
|
-
label_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain labels.
|
142
|
-
This is a required param for estimators, as there is no way to infer these
|
143
|
-
columns. If this parameter is not specified, then object is fitted without
|
144
|
-
labels (like a transformer).
|
145
|
-
|
146
|
-
output_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that will store the
|
148
|
-
output of predict and transform operations. The length of output_cols must
|
149
|
-
match the expected number of output columns from the specific estimator or
|
150
|
-
transformer class used.
|
151
|
-
If this parameter is not specified, output column names are derived by
|
152
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
153
|
-
column names work for estimator's predict() method, but output_cols must
|
154
|
-
be set explicitly for transformers.
|
155
|
-
|
156
|
-
sample_weight_col: Optional[str]
|
157
|
-
A string representing the column name containing the sample weights.
|
158
|
-
This argument is only required when working with weighted datasets.
|
159
|
-
|
160
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
161
|
-
A string or a list of strings indicating column names to be excluded from any
|
162
|
-
operations (such as train, transform, or inference). These specified column(s)
|
163
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
164
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
165
|
-
columns, like index columns, during training or inference.
|
166
|
-
|
167
|
-
drop_input_cols: Optional[bool], default=False
|
168
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
169
179
|
"""
|
170
180
|
|
171
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -200,7 +210,7 @@ class LassoCV(BaseTransformer):
|
|
200
210
|
self.set_passthrough_cols(passthrough_cols)
|
201
211
|
self.set_drop_input_cols(drop_input_cols)
|
202
212
|
self.set_sample_weight_col(sample_weight_col)
|
203
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
204
214
|
|
205
215
|
self._deps = list(deps)
|
206
216
|
|
@@ -222,13 +232,14 @@ class LassoCV(BaseTransformer):
|
|
222
232
|
args=init_args,
|
223
233
|
klass=sklearn.linear_model.LassoCV
|
224
234
|
)
|
225
|
-
self._sklearn_object = sklearn.linear_model.LassoCV(
|
235
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoCV(
|
226
236
|
**cleaned_up_init_args,
|
227
237
|
)
|
228
238
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
229
239
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
230
240
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
231
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
241
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
242
|
+
self._autogenerated = True
|
232
243
|
|
233
244
|
def _get_rand_id(self) -> str:
|
234
245
|
"""
|
@@ -284,54 +295,48 @@ class LassoCV(BaseTransformer):
|
|
284
295
|
self
|
285
296
|
"""
|
286
297
|
self._infer_input_output_cols(dataset)
|
287
|
-
if isinstance(dataset,
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
self.
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
298
|
+
if isinstance(dataset, DataFrame):
|
299
|
+
session = dataset._session
|
300
|
+
assert session is not None # keep mypy happy
|
301
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
302
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
303
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
304
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
305
|
+
|
306
|
+
# Specify input columns so column pruning will be enforced
|
307
|
+
selected_cols = self._get_active_columns()
|
308
|
+
if len(selected_cols) > 0:
|
309
|
+
dataset = dataset.select(selected_cols)
|
310
|
+
|
311
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
312
|
+
|
313
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
314
|
+
if SNOWML_SPROC_ENV in os.environ:
|
315
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
316
|
+
project=_PROJECT,
|
317
|
+
subproject=_SUBPROJECT,
|
318
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoCV.__class__.__name__),
|
319
|
+
api_calls=[Session.call],
|
320
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
321
|
+
)
|
322
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
323
|
+
pd_df.columns = dataset.columns
|
324
|
+
dataset = pd_df
|
325
|
+
|
326
|
+
model_trainer = ModelTrainerBuilder.build(
|
327
|
+
estimator=self._sklearn_object,
|
328
|
+
dataset=dataset,
|
329
|
+
input_cols=self.input_cols,
|
330
|
+
label_cols=self.label_cols,
|
331
|
+
sample_weight_col=self.sample_weight_col,
|
332
|
+
autogenerated=self._autogenerated,
|
333
|
+
subproject=_SUBPROJECT
|
334
|
+
)
|
335
|
+
self._sklearn_object = model_trainer.train()
|
303
336
|
self._is_fitted = True
|
304
337
|
self._get_model_signatures(dataset)
|
305
338
|
return self
|
306
339
|
|
307
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
308
|
-
session = dataset._session
|
309
|
-
assert session is not None # keep mypy happy
|
310
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
311
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
312
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
313
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
314
|
-
|
315
|
-
# Specify input columns so column pruning will be enforced
|
316
|
-
selected_cols = self._get_active_columns()
|
317
|
-
if len(selected_cols) > 0:
|
318
|
-
dataset = dataset.select(selected_cols)
|
319
|
-
|
320
|
-
estimator = self._sklearn_object
|
321
|
-
assert estimator is not None # Keep mypy happy
|
322
|
-
|
323
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
324
|
-
|
325
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
326
|
-
dataset,
|
327
|
-
session,
|
328
|
-
estimator,
|
329
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
330
|
-
self.input_cols,
|
331
|
-
self.label_cols,
|
332
|
-
self.sample_weight_col,
|
333
|
-
)
|
334
|
-
|
335
340
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
336
341
|
if self._drop_input_cols:
|
337
342
|
return []
|
@@ -519,11 +524,6 @@ class LassoCV(BaseTransformer):
|
|
519
524
|
subproject=_SUBPROJECT,
|
520
525
|
custom_tags=dict([("autogen", True)]),
|
521
526
|
)
|
522
|
-
@telemetry.add_stmt_params_to_df(
|
523
|
-
project=_PROJECT,
|
524
|
-
subproject=_SUBPROJECT,
|
525
|
-
custom_tags=dict([("autogen", True)]),
|
526
|
-
)
|
527
527
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
528
528
|
"""Predict using the linear model
|
529
529
|
For more details on this function, see [sklearn.linear_model.LassoCV.predict]
|
@@ -577,11 +577,6 @@ class LassoCV(BaseTransformer):
|
|
577
577
|
subproject=_SUBPROJECT,
|
578
578
|
custom_tags=dict([("autogen", True)]),
|
579
579
|
)
|
580
|
-
@telemetry.add_stmt_params_to_df(
|
581
|
-
project=_PROJECT,
|
582
|
-
subproject=_SUBPROJECT,
|
583
|
-
custom_tags=dict([("autogen", True)]),
|
584
|
-
)
|
585
580
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
586
581
|
"""Method not supported for this class.
|
587
582
|
|
@@ -638,7 +633,8 @@ class LassoCV(BaseTransformer):
|
|
638
633
|
if False:
|
639
634
|
self.fit(dataset)
|
640
635
|
assert self._sklearn_object is not None
|
641
|
-
|
636
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
637
|
+
return labels
|
642
638
|
else:
|
643
639
|
raise NotImplementedError
|
644
640
|
|
@@ -674,6 +670,7 @@ class LassoCV(BaseTransformer):
|
|
674
670
|
output_cols = []
|
675
671
|
|
676
672
|
# Make sure column names are valid snowflake identifiers.
|
673
|
+
assert output_cols is not None # Make MyPy happy
|
677
674
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
678
675
|
|
679
676
|
return rv
|
@@ -684,11 +681,6 @@ class LassoCV(BaseTransformer):
|
|
684
681
|
subproject=_SUBPROJECT,
|
685
682
|
custom_tags=dict([("autogen", True)]),
|
686
683
|
)
|
687
|
-
@telemetry.add_stmt_params_to_df(
|
688
|
-
project=_PROJECT,
|
689
|
-
subproject=_SUBPROJECT,
|
690
|
-
custom_tags=dict([("autogen", True)]),
|
691
|
-
)
|
692
684
|
def predict_proba(
|
693
685
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
694
686
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -729,11 +721,6 @@ class LassoCV(BaseTransformer):
|
|
729
721
|
subproject=_SUBPROJECT,
|
730
722
|
custom_tags=dict([("autogen", True)]),
|
731
723
|
)
|
732
|
-
@telemetry.add_stmt_params_to_df(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
724
|
def predict_log_proba(
|
738
725
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
739
726
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -770,16 +757,6 @@ class LassoCV(BaseTransformer):
|
|
770
757
|
return output_df
|
771
758
|
|
772
759
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
773
|
-
@telemetry.send_api_usage_telemetry(
|
774
|
-
project=_PROJECT,
|
775
|
-
subproject=_SUBPROJECT,
|
776
|
-
custom_tags=dict([("autogen", True)]),
|
777
|
-
)
|
778
|
-
@telemetry.add_stmt_params_to_df(
|
779
|
-
project=_PROJECT,
|
780
|
-
subproject=_SUBPROJECT,
|
781
|
-
custom_tags=dict([("autogen", True)]),
|
782
|
-
)
|
783
760
|
def decision_function(
|
784
761
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
785
762
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -880,11 +857,6 @@ class LassoCV(BaseTransformer):
|
|
880
857
|
subproject=_SUBPROJECT,
|
881
858
|
custom_tags=dict([("autogen", True)]),
|
882
859
|
)
|
883
|
-
@telemetry.add_stmt_params_to_df(
|
884
|
-
project=_PROJECT,
|
885
|
-
subproject=_SUBPROJECT,
|
886
|
-
custom_tags=dict([("autogen", True)]),
|
887
|
-
)
|
888
860
|
def kneighbors(
|
889
861
|
self,
|
890
862
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -944,9 +916,9 @@ class LassoCV(BaseTransformer):
|
|
944
916
|
# For classifier, the type of predict is the same as the type of label
|
945
917
|
if self._sklearn_object._estimator_type == 'classifier':
|
946
918
|
# label columns is the desired type for output
|
947
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
919
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
948
920
|
# rename the output columns
|
949
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
921
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
950
922
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
951
923
|
([] if self._drop_input_cols else inputs)
|
952
924
|
+ outputs)
|