snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PCA(BaseTransformer):
|
57
58
|
r"""Principal component analysis (PCA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.PCA]
|
@@ -60,6 +61,49 @@ class PCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, float or 'mle', default=None
|
64
108
|
Number of components to keep.
|
65
109
|
if n_components is not set all components are kept::
|
@@ -138,42 +182,6 @@ class PCA(BaseTransformer):
|
|
138
182
|
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
|
139
183
|
for reproducible results across multiple function calls.
|
140
184
|
See :term:`Glossary <random_state>`.
|
141
|
-
|
142
|
-
input_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain features.
|
144
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
145
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
146
|
-
parameters are considered input columns.
|
147
|
-
|
148
|
-
label_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that contain labels.
|
150
|
-
This is a required param for estimators, as there is no way to infer these
|
151
|
-
columns. If this parameter is not specified, then object is fitted without
|
152
|
-
labels (like a transformer).
|
153
|
-
|
154
|
-
output_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or list of strings representing column names that will store the
|
156
|
-
output of predict and transform operations. The length of output_cols must
|
157
|
-
match the expected number of output columns from the specific estimator or
|
158
|
-
transformer class used.
|
159
|
-
If this parameter is not specified, output column names are derived by
|
160
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
161
|
-
column names work for estimator's predict() method, but output_cols must
|
162
|
-
be set explicitly for transformers.
|
163
|
-
|
164
|
-
sample_weight_col: Optional[str]
|
165
|
-
A string representing the column name containing the sample weights.
|
166
|
-
This argument is only required when working with weighted datasets.
|
167
|
-
|
168
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
169
|
-
A string or a list of strings indicating column names to be excluded from any
|
170
|
-
operations (such as train, transform, or inference). These specified column(s)
|
171
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
172
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
173
|
-
columns, like index columns, during training or inference.
|
174
|
-
|
175
|
-
drop_input_cols: Optional[bool], default=False
|
176
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
177
185
|
"""
|
178
186
|
|
179
187
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -203,7 +211,7 @@ class PCA(BaseTransformer):
|
|
203
211
|
self.set_passthrough_cols(passthrough_cols)
|
204
212
|
self.set_drop_input_cols(drop_input_cols)
|
205
213
|
self.set_sample_weight_col(sample_weight_col)
|
206
|
-
deps = set(
|
214
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
207
215
|
|
208
216
|
self._deps = list(deps)
|
209
217
|
|
@@ -220,13 +228,14 @@ class PCA(BaseTransformer):
|
|
220
228
|
args=init_args,
|
221
229
|
klass=sklearn.decomposition.PCA
|
222
230
|
)
|
223
|
-
self._sklearn_object = sklearn.decomposition.PCA(
|
231
|
+
self._sklearn_object: Any = sklearn.decomposition.PCA(
|
224
232
|
**cleaned_up_init_args,
|
225
233
|
)
|
226
234
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
227
235
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
228
236
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
229
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
237
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
238
|
+
self._autogenerated = True
|
230
239
|
|
231
240
|
def _get_rand_id(self) -> str:
|
232
241
|
"""
|
@@ -282,54 +291,48 @@ class PCA(BaseTransformer):
|
|
282
291
|
self
|
283
292
|
"""
|
284
293
|
self._infer_input_output_cols(dataset)
|
285
|
-
if isinstance(dataset,
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
self.
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
294
|
+
if isinstance(dataset, DataFrame):
|
295
|
+
session = dataset._session
|
296
|
+
assert session is not None # keep mypy happy
|
297
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
+
|
302
|
+
# Specify input columns so column pruning will be enforced
|
303
|
+
selected_cols = self._get_active_columns()
|
304
|
+
if len(selected_cols) > 0:
|
305
|
+
dataset = dataset.select(selected_cols)
|
306
|
+
|
307
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
+
|
309
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
310
|
+
if SNOWML_SPROC_ENV in os.environ:
|
311
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
312
|
+
project=_PROJECT,
|
313
|
+
subproject=_SUBPROJECT,
|
314
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PCA.__class__.__name__),
|
315
|
+
api_calls=[Session.call],
|
316
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
317
|
+
)
|
318
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
|
+
pd_df.columns = dataset.columns
|
320
|
+
dataset = pd_df
|
321
|
+
|
322
|
+
model_trainer = ModelTrainerBuilder.build(
|
323
|
+
estimator=self._sklearn_object,
|
324
|
+
dataset=dataset,
|
325
|
+
input_cols=self.input_cols,
|
326
|
+
label_cols=self.label_cols,
|
327
|
+
sample_weight_col=self.sample_weight_col,
|
328
|
+
autogenerated=self._autogenerated,
|
329
|
+
subproject=_SUBPROJECT
|
330
|
+
)
|
331
|
+
self._sklearn_object = model_trainer.train()
|
301
332
|
self._is_fitted = True
|
302
333
|
self._get_model_signatures(dataset)
|
303
334
|
return self
|
304
335
|
|
305
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
306
|
-
session = dataset._session
|
307
|
-
assert session is not None # keep mypy happy
|
308
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
-
|
313
|
-
# Specify input columns so column pruning will be enforced
|
314
|
-
selected_cols = self._get_active_columns()
|
315
|
-
if len(selected_cols) > 0:
|
316
|
-
dataset = dataset.select(selected_cols)
|
317
|
-
|
318
|
-
estimator = self._sklearn_object
|
319
|
-
assert estimator is not None # Keep mypy happy
|
320
|
-
|
321
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
322
|
-
|
323
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
324
|
-
dataset,
|
325
|
-
session,
|
326
|
-
estimator,
|
327
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
328
|
-
self.input_cols,
|
329
|
-
self.label_cols,
|
330
|
-
self.sample_weight_col,
|
331
|
-
)
|
332
|
-
|
333
336
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
334
337
|
if self._drop_input_cols:
|
335
338
|
return []
|
@@ -517,11 +520,6 @@ class PCA(BaseTransformer):
|
|
517
520
|
subproject=_SUBPROJECT,
|
518
521
|
custom_tags=dict([("autogen", True)]),
|
519
522
|
)
|
520
|
-
@telemetry.add_stmt_params_to_df(
|
521
|
-
project=_PROJECT,
|
522
|
-
subproject=_SUBPROJECT,
|
523
|
-
custom_tags=dict([("autogen", True)]),
|
524
|
-
)
|
525
523
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
526
524
|
"""Method not supported for this class.
|
527
525
|
|
@@ -573,11 +571,6 @@ class PCA(BaseTransformer):
|
|
573
571
|
subproject=_SUBPROJECT,
|
574
572
|
custom_tags=dict([("autogen", True)]),
|
575
573
|
)
|
576
|
-
@telemetry.add_stmt_params_to_df(
|
577
|
-
project=_PROJECT,
|
578
|
-
subproject=_SUBPROJECT,
|
579
|
-
custom_tags=dict([("autogen", True)]),
|
580
|
-
)
|
581
574
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
582
575
|
"""Apply dimensionality reduction to X
|
583
576
|
For more details on this function, see [sklearn.decomposition.PCA.transform]
|
@@ -636,7 +629,8 @@ class PCA(BaseTransformer):
|
|
636
629
|
if False:
|
637
630
|
self.fit(dataset)
|
638
631
|
assert self._sklearn_object is not None
|
639
|
-
|
632
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
633
|
+
return labels
|
640
634
|
else:
|
641
635
|
raise NotImplementedError
|
642
636
|
|
@@ -672,6 +666,7 @@ class PCA(BaseTransformer):
|
|
672
666
|
output_cols = []
|
673
667
|
|
674
668
|
# Make sure column names are valid snowflake identifiers.
|
669
|
+
assert output_cols is not None # Make MyPy happy
|
675
670
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
676
671
|
|
677
672
|
return rv
|
@@ -682,11 +677,6 @@ class PCA(BaseTransformer):
|
|
682
677
|
subproject=_SUBPROJECT,
|
683
678
|
custom_tags=dict([("autogen", True)]),
|
684
679
|
)
|
685
|
-
@telemetry.add_stmt_params_to_df(
|
686
|
-
project=_PROJECT,
|
687
|
-
subproject=_SUBPROJECT,
|
688
|
-
custom_tags=dict([("autogen", True)]),
|
689
|
-
)
|
690
680
|
def predict_proba(
|
691
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
692
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -727,11 +717,6 @@ class PCA(BaseTransformer):
|
|
727
717
|
subproject=_SUBPROJECT,
|
728
718
|
custom_tags=dict([("autogen", True)]),
|
729
719
|
)
|
730
|
-
@telemetry.add_stmt_params_to_df(
|
731
|
-
project=_PROJECT,
|
732
|
-
subproject=_SUBPROJECT,
|
733
|
-
custom_tags=dict([("autogen", True)]),
|
734
|
-
)
|
735
720
|
def predict_log_proba(
|
736
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
737
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -768,16 +753,6 @@ class PCA(BaseTransformer):
|
|
768
753
|
return output_df
|
769
754
|
|
770
755
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
771
|
-
@telemetry.send_api_usage_telemetry(
|
772
|
-
project=_PROJECT,
|
773
|
-
subproject=_SUBPROJECT,
|
774
|
-
custom_tags=dict([("autogen", True)]),
|
775
|
-
)
|
776
|
-
@telemetry.add_stmt_params_to_df(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
756
|
def decision_function(
|
782
757
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
783
758
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -878,11 +853,6 @@ class PCA(BaseTransformer):
|
|
878
853
|
subproject=_SUBPROJECT,
|
879
854
|
custom_tags=dict([("autogen", True)]),
|
880
855
|
)
|
881
|
-
@telemetry.add_stmt_params_to_df(
|
882
|
-
project=_PROJECT,
|
883
|
-
subproject=_SUBPROJECT,
|
884
|
-
custom_tags=dict([("autogen", True)]),
|
885
|
-
)
|
886
856
|
def kneighbors(
|
887
857
|
self,
|
888
858
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -942,9 +912,9 @@ class PCA(BaseTransformer):
|
|
942
912
|
# For classifier, the type of predict is the same as the type of label
|
943
913
|
if self._sklearn_object._estimator_type == 'classifier':
|
944
914
|
# label columns is the desired type for output
|
945
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
915
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
946
916
|
# rename the output columns
|
947
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
917
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
948
918
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
949
919
|
([] if self._drop_input_cols else inputs)
|
950
920
|
+ outputs)
|