snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PassiveAggressiveClassifier(BaseTransformer):
|
57
58
|
r"""Passive Aggressive Classifier
|
58
59
|
For more details on this class, see [sklearn.linear_model.PassiveAggressiveClassifier]
|
@@ -60,6 +61,51 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
C: float, default=1.0
|
64
110
|
Maximum step size (regularization). Defaults to 1.0.
|
65
111
|
|
@@ -139,42 +185,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
139
185
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
140
186
|
averaging will begin once the total number of samples seen reaches
|
141
187
|
average. So average=10 will begin averaging after seeing 10 samples.
|
142
|
-
|
143
|
-
input_cols: Optional[Union[str, List[str]]]
|
144
|
-
A string or list of strings representing column names that contain features.
|
145
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
146
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
147
|
-
parameters are considered input columns.
|
148
|
-
|
149
|
-
label_cols: Optional[Union[str, List[str]]]
|
150
|
-
A string or list of strings representing column names that contain labels.
|
151
|
-
This is a required param for estimators, as there is no way to infer these
|
152
|
-
columns. If this parameter is not specified, then object is fitted without
|
153
|
-
labels (like a transformer).
|
154
|
-
|
155
|
-
output_cols: Optional[Union[str, List[str]]]
|
156
|
-
A string or list of strings representing column names that will store the
|
157
|
-
output of predict and transform operations. The length of output_cols must
|
158
|
-
match the expected number of output columns from the specific estimator or
|
159
|
-
transformer class used.
|
160
|
-
If this parameter is not specified, output column names are derived by
|
161
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
162
|
-
column names work for estimator's predict() method, but output_cols must
|
163
|
-
be set explicitly for transformers.
|
164
|
-
|
165
|
-
sample_weight_col: Optional[str]
|
166
|
-
A string representing the column name containing the sample weights.
|
167
|
-
This argument is only required when working with weighted datasets.
|
168
|
-
|
169
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
170
|
-
A string or a list of strings indicating column names to be excluded from any
|
171
|
-
operations (such as train, transform, or inference). These specified column(s)
|
172
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
173
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
174
|
-
columns, like index columns, during training or inference.
|
175
|
-
|
176
|
-
drop_input_cols: Optional[bool], default=False
|
177
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
178
188
|
"""
|
179
189
|
|
180
190
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -210,7 +220,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
210
220
|
self.set_passthrough_cols(passthrough_cols)
|
211
221
|
self.set_drop_input_cols(drop_input_cols)
|
212
222
|
self.set_sample_weight_col(sample_weight_col)
|
213
|
-
deps = set(
|
223
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
214
224
|
|
215
225
|
self._deps = list(deps)
|
216
226
|
|
@@ -233,13 +243,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
233
243
|
args=init_args,
|
234
244
|
klass=sklearn.linear_model.PassiveAggressiveClassifier
|
235
245
|
)
|
236
|
-
self._sklearn_object = sklearn.linear_model.PassiveAggressiveClassifier(
|
246
|
+
self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveClassifier(
|
237
247
|
**cleaned_up_init_args,
|
238
248
|
)
|
239
249
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
240
250
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
241
251
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
242
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
252
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
253
|
+
self._autogenerated = True
|
243
254
|
|
244
255
|
def _get_rand_id(self) -> str:
|
245
256
|
"""
|
@@ -295,54 +306,48 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
295
306
|
self
|
296
307
|
"""
|
297
308
|
self._infer_input_output_cols(dataset)
|
298
|
-
if isinstance(dataset,
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
self.
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
309
|
+
if isinstance(dataset, DataFrame):
|
310
|
+
session = dataset._session
|
311
|
+
assert session is not None # keep mypy happy
|
312
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
313
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
314
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
315
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
316
|
+
|
317
|
+
# Specify input columns so column pruning will be enforced
|
318
|
+
selected_cols = self._get_active_columns()
|
319
|
+
if len(selected_cols) > 0:
|
320
|
+
dataset = dataset.select(selected_cols)
|
321
|
+
|
322
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
323
|
+
|
324
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
325
|
+
if SNOWML_SPROC_ENV in os.environ:
|
326
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
327
|
+
project=_PROJECT,
|
328
|
+
subproject=_SUBPROJECT,
|
329
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__),
|
330
|
+
api_calls=[Session.call],
|
331
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
332
|
+
)
|
333
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
334
|
+
pd_df.columns = dataset.columns
|
335
|
+
dataset = pd_df
|
336
|
+
|
337
|
+
model_trainer = ModelTrainerBuilder.build(
|
338
|
+
estimator=self._sklearn_object,
|
339
|
+
dataset=dataset,
|
340
|
+
input_cols=self.input_cols,
|
341
|
+
label_cols=self.label_cols,
|
342
|
+
sample_weight_col=self.sample_weight_col,
|
343
|
+
autogenerated=self._autogenerated,
|
344
|
+
subproject=_SUBPROJECT
|
345
|
+
)
|
346
|
+
self._sklearn_object = model_trainer.train()
|
314
347
|
self._is_fitted = True
|
315
348
|
self._get_model_signatures(dataset)
|
316
349
|
return self
|
317
350
|
|
318
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
319
|
-
session = dataset._session
|
320
|
-
assert session is not None # keep mypy happy
|
321
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
322
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
323
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
324
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
325
|
-
|
326
|
-
# Specify input columns so column pruning will be enforced
|
327
|
-
selected_cols = self._get_active_columns()
|
328
|
-
if len(selected_cols) > 0:
|
329
|
-
dataset = dataset.select(selected_cols)
|
330
|
-
|
331
|
-
estimator = self._sklearn_object
|
332
|
-
assert estimator is not None # Keep mypy happy
|
333
|
-
|
334
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
335
|
-
|
336
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
337
|
-
dataset,
|
338
|
-
session,
|
339
|
-
estimator,
|
340
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
341
|
-
self.input_cols,
|
342
|
-
self.label_cols,
|
343
|
-
self.sample_weight_col,
|
344
|
-
)
|
345
|
-
|
346
351
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
347
352
|
if self._drop_input_cols:
|
348
353
|
return []
|
@@ -530,11 +535,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
530
535
|
subproject=_SUBPROJECT,
|
531
536
|
custom_tags=dict([("autogen", True)]),
|
532
537
|
)
|
533
|
-
@telemetry.add_stmt_params_to_df(
|
534
|
-
project=_PROJECT,
|
535
|
-
subproject=_SUBPROJECT,
|
536
|
-
custom_tags=dict([("autogen", True)]),
|
537
|
-
)
|
538
538
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
539
539
|
"""Predict class labels for samples in X
|
540
540
|
For more details on this function, see [sklearn.linear_model.PassiveAggressiveClassifier.predict]
|
@@ -588,11 +588,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
588
588
|
subproject=_SUBPROJECT,
|
589
589
|
custom_tags=dict([("autogen", True)]),
|
590
590
|
)
|
591
|
-
@telemetry.add_stmt_params_to_df(
|
592
|
-
project=_PROJECT,
|
593
|
-
subproject=_SUBPROJECT,
|
594
|
-
custom_tags=dict([("autogen", True)]),
|
595
|
-
)
|
596
591
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
597
592
|
"""Method not supported for this class.
|
598
593
|
|
@@ -649,7 +644,8 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
649
644
|
if False:
|
650
645
|
self.fit(dataset)
|
651
646
|
assert self._sklearn_object is not None
|
652
|
-
|
647
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
648
|
+
return labels
|
653
649
|
else:
|
654
650
|
raise NotImplementedError
|
655
651
|
|
@@ -685,6 +681,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
685
681
|
output_cols = []
|
686
682
|
|
687
683
|
# Make sure column names are valid snowflake identifiers.
|
684
|
+
assert output_cols is not None # Make MyPy happy
|
688
685
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
689
686
|
|
690
687
|
return rv
|
@@ -695,11 +692,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
695
692
|
subproject=_SUBPROJECT,
|
696
693
|
custom_tags=dict([("autogen", True)]),
|
697
694
|
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
695
|
def predict_proba(
|
704
696
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
705
697
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -740,11 +732,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
740
732
|
subproject=_SUBPROJECT,
|
741
733
|
custom_tags=dict([("autogen", True)]),
|
742
734
|
)
|
743
|
-
@telemetry.add_stmt_params_to_df(
|
744
|
-
project=_PROJECT,
|
745
|
-
subproject=_SUBPROJECT,
|
746
|
-
custom_tags=dict([("autogen", True)]),
|
747
|
-
)
|
748
735
|
def predict_log_proba(
|
749
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
750
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -781,16 +768,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
781
768
|
return output_df
|
782
769
|
|
783
770
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
784
|
-
@telemetry.send_api_usage_telemetry(
|
785
|
-
project=_PROJECT,
|
786
|
-
subproject=_SUBPROJECT,
|
787
|
-
custom_tags=dict([("autogen", True)]),
|
788
|
-
)
|
789
|
-
@telemetry.add_stmt_params_to_df(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
771
|
def decision_function(
|
795
772
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
796
773
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -893,11 +870,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
893
870
|
subproject=_SUBPROJECT,
|
894
871
|
custom_tags=dict([("autogen", True)]),
|
895
872
|
)
|
896
|
-
@telemetry.add_stmt_params_to_df(
|
897
|
-
project=_PROJECT,
|
898
|
-
subproject=_SUBPROJECT,
|
899
|
-
custom_tags=dict([("autogen", True)]),
|
900
|
-
)
|
901
873
|
def kneighbors(
|
902
874
|
self,
|
903
875
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -957,9 +929,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
957
929
|
# For classifier, the type of predict is the same as the type of label
|
958
930
|
if self._sklearn_object._estimator_type == 'classifier':
|
959
931
|
# label columns is the desired type for output
|
960
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
932
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
961
933
|
# rename the output columns
|
962
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
934
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
963
935
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
964
936
|
([] if self._drop_input_cols else inputs)
|
965
937
|
+ outputs)
|