snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -2,13 +2,13 @@
2
2
  # This code is auto-generated using the sklearn_wrapper_template.py_template template.
3
3
  # Do not modify the auto-generated code(except automatic reformatting by precommit hooks).
4
4
  #
5
- from typing import Dict, Iterable, List, Optional, Set, Union
5
+ from typing import Any, Dict, Iterable, List, Optional, Set, Union
6
6
  from uuid import uuid4
7
7
 
8
+ import cloudpickle as cp
8
9
  import numpy as np
9
10
  import pandas as pd
10
11
  import sklearn.model_selection
11
- from sklearn.model_selection import ParameterGrid
12
12
  from sklearn.utils.metaestimators import available_if
13
13
 
14
14
  from snowflake.ml._internal import telemetry
@@ -25,13 +25,12 @@ from snowflake.ml.model.model_signature import (
25
25
  from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
26
26
  from snowflake.ml.modeling._internal.estimator_utils import (
27
27
  gather_dependencies,
28
- is_single_node,
29
28
  original_estimator_has_callable,
30
29
  transform_snowml_obj_to_sklearn_obj,
31
30
  validate_sklearn_args,
32
31
  )
32
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
33
33
  from snowflake.ml.modeling._internal.snowpark_handlers import (
34
- SklearnModelSelectionWrapperProvider,
35
34
  SnowparkHandlers as HandlersImpl,
36
35
  )
37
36
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -53,19 +52,54 @@ class GridSearchCV(BaseTransformer):
53
52
 
54
53
  Parameters
55
54
  ----------
56
- estimator : estimator object
55
+ estimator: estimator object
57
56
  This is assumed to implement the scikit-learn estimator interface.
58
57
  Either estimator needs to provide a ``score`` function,
59
58
  or ``scoring`` must be passed.
60
59
 
61
- param_grid : dict or list of dictionaries
60
+ param_grid: dict or list of dictionaries
62
61
  Dictionary with parameters names (`str`) as keys and lists of
63
62
  parameter settings to try as values, or a list of such
64
63
  dictionaries, in which case the grids spanned by each dictionary
65
64
  in the list are explored. This enables searching over any sequence
66
65
  of parameter settings.
67
66
 
68
- scoring : str, callable, list, tuple or dict, default=None
67
+ input_cols: Optional[Union[str, List[str]]]
68
+ A string or list of strings representing column names that contain features.
69
+ If this parameter is not specified, all columns in the input DataFrame except
70
+ the columns specified by label_cols and sample-weight_col parameters are
71
+ considered input columns.
72
+
73
+ label_cols: Optional[Union[str, List[str]]]
74
+ A string or list of strings representing column names that contain labels.
75
+ This is a required param for estimators, as there is no way to infer these
76
+ columns. If this parameter is not specified, then object is fitted without
77
+ labels(Like a transformer).
78
+
79
+ output_cols: Optional[Union[str, List[str]]]
80
+ A string or list of strings representing column names that will store the
81
+ output of predict and transform operations. The length of output_cols mus
82
+ match the expected number of output columns from the specific estimator or
83
+ transformer class used.
84
+ If this parameter is not specified, output column names are derived by
85
+ adding an OUTPUT_ prefix to the label column names. These inferred output
86
+ column names work for estimator's predict() method, but output_cols must
87
+ be set explicitly for transformers.
88
+
89
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
90
+ operations (such as train, transform, or inference). These specified column(s)
91
+ will remain untouched throughout the process. This option is helpful in scenarios
92
+ requiring automatic input_cols inference, but need to avoid using specific
93
+ columns, like index columns, during training or inference.
94
+
95
+ sample_weight_col: Optional[str]
96
+ A string representing the column name containing the examples’ weights.
97
+ This argument is only required when working with weighted datasets.
98
+
99
+ drop_input_cols: Optional[bool], default=False
100
+ If set, the response of predict(), transform() methods will not contain input columns.
101
+
102
+ scoring: str, callable, list, tuple or dict, default=None
69
103
  Strategy to evaluate the performance of the cross-validated model on
70
104
  the test set.
71
105
 
@@ -83,13 +117,13 @@ class GridSearchCV(BaseTransformer):
83
117
 
84
118
  See :ref:`multimetric_grid_search` for an example.
85
119
 
86
- n_jobs : int, default=None
120
+ n_jobs: int, default=None
87
121
  Number of jobs to run in parallel.
88
122
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
89
123
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
90
124
  for more details.
91
125
 
92
- refit : bool, str, or callable, default=True
126
+ refit: bool, str, or callable, default=True
93
127
  Refit an estimator using the best found parameters on the whole
94
128
  dataset.
95
129
 
@@ -120,7 +154,7 @@ class GridSearchCV(BaseTransformer):
120
154
  to see how to design a custom selection strategy using a callable
121
155
  via `refit`.
122
156
 
123
- cv : int, cross-validation generator or an iterable, default=None
157
+ cv: int, cross-validation generator or an iterable, default=None
124
158
  Determines the cross-validation splitting strategy.
125
159
  Possible inputs for cv are:
126
160
 
@@ -137,7 +171,7 @@ class GridSearchCV(BaseTransformer):
137
171
  Refer :ref:`User Guide <cross_validation>` for the various
138
172
  cross-validation strategies that can be used here.
139
173
 
140
- verbose : int
174
+ verbose: int
141
175
  Controls the verbosity: the higher, the more messages.
142
176
 
143
177
  - >1 : the computation time for each fold and parameter candidate is
@@ -146,7 +180,7 @@ class GridSearchCV(BaseTransformer):
146
180
  - >3 : the fold and candidate parameter indexes are also displayed
147
181
  together with the starting time of the computation.
148
182
 
149
- pre_dispatch : int, or str, default='2*n_jobs'
183
+ pre_dispatch: int, or str, default='2*n_jobs'
150
184
  Controls the number of jobs that get dispatched during parallel
151
185
  execution. Reducing this number can be useful to avoid an
152
186
  explosion of memory consumption when more jobs get dispatched
@@ -163,13 +197,13 @@ class GridSearchCV(BaseTransformer):
163
197
  - A str, giving an expression as a function of n_jobs,
164
198
  as in '2*n_jobs'
165
199
 
166
- error_score : 'raise' or numeric, default=np.nan
200
+ error_score: 'raise' or numeric, default=np.nan
167
201
  Value to assign to the score if an error occurs in estimator fitting.
168
202
  If set to 'raise', the error is raised. If a numeric value is given,
169
203
  FitFailedWarning is raised. This parameter does not affect the refit
170
204
  step, which will always raise the error.
171
205
 
172
- return_train_score : bool, default=False
206
+ return_train_score: bool, default=False
173
207
  If ``False``, the ``cv_results_`` attribute will not include training
174
208
  scores.
175
209
  Computing training scores is used to get insights on how different
@@ -177,41 +211,6 @@ class GridSearchCV(BaseTransformer):
177
211
  However computing the scores on the training set can be computationally
178
212
  expensive and is not strictly required to select the parameters that
179
213
  yield the best generalization performance.
180
-
181
- input_cols : Optional[Union[str, List[str]]]
182
- A string or list of strings representing column names that contain features.
183
- If this parameter is not specified, all columns in the input DataFrame except
184
- the columns specified by label_cols and sample-weight_col parameters are
185
- considered input columns.
186
-
187
- label_cols : Optional[Union[str, List[str]]]
188
- A string or list of strings representing column names that contain labels.
189
- This is a required param for estimators, as there is no way to infer these
190
- columns. If this parameter is not specified, then object is fitted without
191
- labels(Like a transformer).
192
-
193
- output_cols: Optional[Union[str, List[str]]]
194
- A string or list of strings representing column names that will store the
195
- output of predict and transform operations. The length of output_cols mus
196
- match the expected number of output columns from the specific estimator or
197
- transformer class used.
198
- If this parameter is not specified, output column names are derived by
199
- adding an OUTPUT_ prefix to the label column names. These inferred output
200
- column names work for estimator's predict() method, but output_cols must
201
- be set explicitly for transformers.
202
-
203
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
204
- operations (such as train, transform, or inference). These specified column(s)
205
- will remain untouched throughout the process. This option is helpful in scenarios
206
- requiring automatic input_cols inference, but need to avoid using specific
207
- columns, like index columns, during training or inference.
208
-
209
- sample_weight_col: Optional[str]
210
- A string representing the column name containing the examples’ weights.
211
- This argument is only required when working with weighted datasets.
212
-
213
- drop_input_cols: Optional[bool], default=False
214
- If set, the response of predict(), transform() methods will not contain input columns.
215
214
  """
216
215
  _ENABLE_DISTRIBUTED = True
217
216
 
@@ -236,7 +235,11 @@ class GridSearchCV(BaseTransformer):
236
235
  sample_weight_col: Optional[str] = None,
237
236
  ) -> None:
238
237
  super().__init__()
239
- deps: Set[str] = set(SklearnModelSelectionWrapperProvider().dependencies)
238
+ deps: Set[str] = {
239
+ f"numpy=={np.__version__}",
240
+ f"scikit-learn=={sklearn.__version__}",
241
+ f"cloudpickle=={cp.__version__}",
242
+ }
240
243
  deps = deps | gather_dependencies(estimator)
241
244
  self._deps = list(deps)
242
245
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -253,7 +256,7 @@ class GridSearchCV(BaseTransformer):
253
256
  "return_train_score": (return_train_score, False, False),
254
257
  }
255
258
  cleaned_up_init_args = validate_sklearn_args(args=init_args, klass=sklearn.model_selection.GridSearchCV)
256
- self._sklearn_object = sklearn.model_selection.GridSearchCV(
259
+ self._sklearn_object: Any = sklearn.model_selection.GridSearchCV(
257
260
  **cleaned_up_init_args,
258
261
  )
259
262
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
@@ -266,7 +269,6 @@ class GridSearchCV(BaseTransformer):
266
269
  self._handlers: CVHandlers = HandlersImpl(
267
270
  class_name=self.__class__.__name__,
268
271
  subproject=_SUBPROJECT,
269
- wrapper_provider=SklearnModelSelectionWrapperProvider(),
270
272
  )
271
273
 
272
274
  def _get_rand_id(self) -> str:
@@ -294,10 +296,6 @@ class GridSearchCV(BaseTransformer):
294
296
  For more details on this function, see [sklearn.model_selection.GridSearchCV.fit]
295
297
  (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV.fit)
296
298
 
297
-
298
- Raises:
299
- TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
300
-
301
299
  Args:
302
300
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
303
301
  Snowpark or Pandas DataFrame.
@@ -306,70 +304,37 @@ class GridSearchCV(BaseTransformer):
306
304
  self
307
305
  """
308
306
  self._infer_input_output_cols(dataset)
309
- if isinstance(dataset, pd.DataFrame):
310
- self._estimator = self._handlers.fit_pandas(
311
- dataset, self._sklearn_object, self.input_cols, self.label_cols, self.sample_weight_col
312
- )
313
- elif isinstance(dataset, DataFrame):
314
- self._fit_snowpark(dataset)
315
- else:
316
- raise TypeError(
317
- f"Unexpected dataset type: {type(dataset)}."
318
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
307
+ if self._sklearn_object.n_jobs is None:
308
+ self._sklearn_object.n_jobs = -1
309
+ if isinstance(dataset, DataFrame):
310
+ session = dataset._session
311
+ assert session is not None # keep mypy happy
312
+ # Validate that key package version in user workspace are supported in snowflake conda channel
313
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
314
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
315
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
319
316
  )
320
- self._is_fitted = True
321
- self._get_model_signatures(dataset)
322
- return self
323
317
 
324
- def _fit_snowpark(self, dataset: DataFrame) -> None:
325
- session = dataset._session
326
- assert session is not None # keep mypy happy
327
- # Validate that key package version in user workspace are supported in snowflake conda channel
328
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
329
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
330
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
331
- )
318
+ # Specify input columns so column pruning will be enforced
319
+ selected_cols = self._get_active_columns()
320
+ if len(selected_cols) > 0:
321
+ dataset = dataset.select(selected_cols)
332
322
 
333
- selected_cols = self._get_active_columns()
334
- if len(selected_cols) > 0:
335
- dataset = dataset.select(selected_cols)
323
+ self._snowpark_cols = dataset.select(self.input_cols).columns
336
324
 
337
- assert self._sklearn_object is not None
338
- is_distributed = not is_single_node(session) and self._ENABLE_DISTRIBUTED is True
339
- if is_distributed:
340
- # Set the default value of the `n_jobs` attribute for the estimator.
341
- # If minus one is set, it will not be abided by in the UDTF, so we set that to the default value as well.
342
- if hasattr(self._sklearn_object.estimator, "n_jobs") and self._sklearn_object.estimator.n_jobs in [
343
- None,
344
- -1,
345
- ]:
346
- self._sklearn_object.estimator.n_jobs = DEFAULT_UDTF_NJOBS
347
- self._sklearn_object = self._handlers.fit_search_snowpark(
348
- param_grid=ParameterGrid(self._sklearn_object.param_grid),
349
- dataset=dataset,
350
- session=session,
351
- estimator=self._sklearn_object,
352
- dependencies=self._get_dependencies(),
353
- udf_imports=["sklearn"],
354
- input_cols=self.input_cols,
355
- label_cols=self.label_cols,
356
- sample_weight_col=self.sample_weight_col,
357
- )
358
- else:
359
- # Fall back with stored procedure implementation
360
- # set the parallel factor to default to minus one, to fully accelerate the cores in single node
361
- if self._sklearn_object.n_jobs is None:
362
- self._sklearn_object.n_jobs = -1
363
-
364
- self._sklearn_object = self._handlers.fit_snowpark(
365
- dataset,
366
- session,
367
- self._sklearn_object,
368
- ["snowflake-snowpark-python"] + self._get_dependencies(),
369
- self.input_cols,
370
- self.label_cols,
371
- self.sample_weight_col,
372
- )
325
+ model_trainer = ModelTrainerBuilder.build(
326
+ estimator=self._sklearn_object,
327
+ dataset=dataset,
328
+ input_cols=self.input_cols,
329
+ label_cols=self.label_cols,
330
+ sample_weight_col=self.sample_weight_col,
331
+ autogenerated=False,
332
+ subproject=_SUBPROJECT,
333
+ )
334
+ self._sklearn_object = model_trainer.train()
335
+ self._is_fitted = True
336
+ self._get_model_signatures(dataset)
337
+ return self
373
338
 
374
339
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
375
340
  if self._drop_input_cols:
@@ -523,10 +488,6 @@ class GridSearchCV(BaseTransformer):
523
488
  project=_PROJECT,
524
489
  subproject=_SUBPROJECT,
525
490
  )
526
- @telemetry.add_stmt_params_to_df(
527
- project=_PROJECT,
528
- subproject=_SUBPROJECT,
529
- )
530
491
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
531
492
  """Call predict on the estimator with the best found parameters
532
493
  For more details on this function, see [sklearn.model_selection.GridSearchCV.predict]
@@ -569,10 +530,6 @@ class GridSearchCV(BaseTransformer):
569
530
  project=_PROJECT,
570
531
  subproject=_SUBPROJECT,
571
532
  )
572
- @telemetry.add_stmt_params_to_df(
573
- project=_PROJECT,
574
- subproject=_SUBPROJECT,
575
- )
576
533
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
577
534
  """Call transform on the estimator with the best found parameters
578
535
  For more details on this function, see [sklearn.model_selection.GridSearchCV.transform]
@@ -636,10 +593,6 @@ class GridSearchCV(BaseTransformer):
636
593
  project=_PROJECT,
637
594
  subproject=_SUBPROJECT,
638
595
  )
639
- @telemetry.add_stmt_params_to_df(
640
- project=_PROJECT,
641
- subproject=_SUBPROJECT,
642
- )
643
596
  def predict_proba(
644
597
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
645
598
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -677,10 +630,6 @@ class GridSearchCV(BaseTransformer):
677
630
  project=_PROJECT,
678
631
  subproject=_SUBPROJECT,
679
632
  )
680
- @telemetry.add_stmt_params_to_df(
681
- project=_PROJECT,
682
- subproject=_SUBPROJECT,
683
- )
684
633
  def predict_log_proba(
685
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
686
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -719,10 +668,6 @@ class GridSearchCV(BaseTransformer):
719
668
  project=_PROJECT,
720
669
  subproject=_SUBPROJECT,
721
670
  )
722
- @telemetry.add_stmt_params_to_df(
723
- project=_PROJECT,
724
- subproject=_SUBPROJECT,
725
- )
726
671
  def decision_function(
727
672
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
728
673
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -759,6 +704,8 @@ class GridSearchCV(BaseTransformer):
759
704
  @available_if(original_estimator_has_callable("score")) # type: ignore[misc]
760
705
  def score(self, dataset: Union[DataFrame, pd.DataFrame]) -> float:
761
706
  """
707
+ If implemented by the original estimator, return the score for the dataset.
708
+
762
709
  Args:
763
710
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
764
711
  Snowpark or Pandas DataFrame.
@@ -811,9 +758,9 @@ class GridSearchCV(BaseTransformer):
811
758
  # For classifier, the type of predict is the same as the type of label
812
759
  if self._sklearn_object._estimator_type == "classifier":
813
760
  # label columns is the desired type for output
814
- outputs = _infer_signature(dataset[self.label_cols], "output")
761
+ outputs = list(_infer_signature(dataset[self.label_cols], "output"))
815
762
  # rename the output columns
816
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
763
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
817
764
  self._model_signature_dict["predict"] = ModelSignature(
818
765
  inputs, ([] if self._drop_input_cols else inputs) + outputs
819
766
  )
@@ -850,6 +797,9 @@ class GridSearchCV(BaseTransformer):
850
797
  return self._model_signature_dict
851
798
 
852
799
  def to_sklearn(self) -> sklearn.model_selection.GridSearchCV:
800
+ """
801
+ Get sklearn.model_selection.GridSearchCV object.
802
+ """
853
803
  assert self._sklearn_object is not None
854
804
  return self._sklearn_object
855
805