snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TweedieRegressor(BaseTransformer):
|
57
58
|
r"""Generalized Linear Model with a Tweedie distribution
|
58
59
|
For more details on this class, see [sklearn.linear_model.TweedieRegressor]
|
@@ -60,6 +61,51 @@ class TweedieRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
power: float, default=0
|
64
110
|
The power determines the underlying target distribution according
|
65
111
|
to the following table:
|
@@ -132,42 +178,6 @@ class TweedieRegressor(BaseTransformer):
|
|
132
178
|
verbose: int, default=0
|
133
179
|
For the lbfgs solver set verbose to any positive number for verbosity.
|
134
180
|
Values must be in the range `[0, inf)`.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
140
|
-
parameters are considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or a list of strings indicating column names to be excluded from any
|
164
|
-
operations (such as train, transform, or inference). These specified column(s)
|
165
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
166
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
167
|
-
columns, like index columns, during training or inference.
|
168
|
-
|
169
|
-
drop_input_cols: Optional[bool], default=False
|
170
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
171
181
|
"""
|
172
182
|
|
173
183
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -197,7 +207,7 @@ class TweedieRegressor(BaseTransformer):
|
|
197
207
|
self.set_passthrough_cols(passthrough_cols)
|
198
208
|
self.set_drop_input_cols(drop_input_cols)
|
199
209
|
self.set_sample_weight_col(sample_weight_col)
|
200
|
-
deps = set(
|
210
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
201
211
|
|
202
212
|
self._deps = list(deps)
|
203
213
|
|
@@ -214,13 +224,14 @@ class TweedieRegressor(BaseTransformer):
|
|
214
224
|
args=init_args,
|
215
225
|
klass=sklearn.linear_model.TweedieRegressor
|
216
226
|
)
|
217
|
-
self._sklearn_object = sklearn.linear_model.TweedieRegressor(
|
227
|
+
self._sklearn_object: Any = sklearn.linear_model.TweedieRegressor(
|
218
228
|
**cleaned_up_init_args,
|
219
229
|
)
|
220
230
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
221
231
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
222
232
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
223
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TweedieRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
233
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TweedieRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
234
|
+
self._autogenerated = True
|
224
235
|
|
225
236
|
def _get_rand_id(self) -> str:
|
226
237
|
"""
|
@@ -276,54 +287,48 @@ class TweedieRegressor(BaseTransformer):
|
|
276
287
|
self
|
277
288
|
"""
|
278
289
|
self._infer_input_output_cols(dataset)
|
279
|
-
if isinstance(dataset,
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
self.
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
290
|
+
if isinstance(dataset, DataFrame):
|
291
|
+
session = dataset._session
|
292
|
+
assert session is not None # keep mypy happy
|
293
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
294
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
295
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
296
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
297
|
+
|
298
|
+
# Specify input columns so column pruning will be enforced
|
299
|
+
selected_cols = self._get_active_columns()
|
300
|
+
if len(selected_cols) > 0:
|
301
|
+
dataset = dataset.select(selected_cols)
|
302
|
+
|
303
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
304
|
+
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
306
|
+
if SNOWML_SPROC_ENV in os.environ:
|
307
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
308
|
+
project=_PROJECT,
|
309
|
+
subproject=_SUBPROJECT,
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TweedieRegressor.__class__.__name__),
|
311
|
+
api_calls=[Session.call],
|
312
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
313
|
+
)
|
314
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
315
|
+
pd_df.columns = dataset.columns
|
316
|
+
dataset = pd_df
|
317
|
+
|
318
|
+
model_trainer = ModelTrainerBuilder.build(
|
319
|
+
estimator=self._sklearn_object,
|
320
|
+
dataset=dataset,
|
321
|
+
input_cols=self.input_cols,
|
322
|
+
label_cols=self.label_cols,
|
323
|
+
sample_weight_col=self.sample_weight_col,
|
324
|
+
autogenerated=self._autogenerated,
|
325
|
+
subproject=_SUBPROJECT
|
326
|
+
)
|
327
|
+
self._sklearn_object = model_trainer.train()
|
295
328
|
self._is_fitted = True
|
296
329
|
self._get_model_signatures(dataset)
|
297
330
|
return self
|
298
331
|
|
299
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
300
|
-
session = dataset._session
|
301
|
-
assert session is not None # keep mypy happy
|
302
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
303
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
304
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
305
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
306
|
-
|
307
|
-
# Specify input columns so column pruning will be enforced
|
308
|
-
selected_cols = self._get_active_columns()
|
309
|
-
if len(selected_cols) > 0:
|
310
|
-
dataset = dataset.select(selected_cols)
|
311
|
-
|
312
|
-
estimator = self._sklearn_object
|
313
|
-
assert estimator is not None # Keep mypy happy
|
314
|
-
|
315
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
316
|
-
|
317
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
318
|
-
dataset,
|
319
|
-
session,
|
320
|
-
estimator,
|
321
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
322
|
-
self.input_cols,
|
323
|
-
self.label_cols,
|
324
|
-
self.sample_weight_col,
|
325
|
-
)
|
326
|
-
|
327
332
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
328
333
|
if self._drop_input_cols:
|
329
334
|
return []
|
@@ -511,11 +516,6 @@ class TweedieRegressor(BaseTransformer):
|
|
511
516
|
subproject=_SUBPROJECT,
|
512
517
|
custom_tags=dict([("autogen", True)]),
|
513
518
|
)
|
514
|
-
@telemetry.add_stmt_params_to_df(
|
515
|
-
project=_PROJECT,
|
516
|
-
subproject=_SUBPROJECT,
|
517
|
-
custom_tags=dict([("autogen", True)]),
|
518
|
-
)
|
519
519
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
520
520
|
"""Predict using GLM with feature matrix X
|
521
521
|
For more details on this function, see [sklearn.linear_model.TweedieRegressor.predict]
|
@@ -569,11 +569,6 @@ class TweedieRegressor(BaseTransformer):
|
|
569
569
|
subproject=_SUBPROJECT,
|
570
570
|
custom_tags=dict([("autogen", True)]),
|
571
571
|
)
|
572
|
-
@telemetry.add_stmt_params_to_df(
|
573
|
-
project=_PROJECT,
|
574
|
-
subproject=_SUBPROJECT,
|
575
|
-
custom_tags=dict([("autogen", True)]),
|
576
|
-
)
|
577
572
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
578
573
|
"""Method not supported for this class.
|
579
574
|
|
@@ -630,7 +625,8 @@ class TweedieRegressor(BaseTransformer):
|
|
630
625
|
if False:
|
631
626
|
self.fit(dataset)
|
632
627
|
assert self._sklearn_object is not None
|
633
|
-
|
628
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
629
|
+
return labels
|
634
630
|
else:
|
635
631
|
raise NotImplementedError
|
636
632
|
|
@@ -666,6 +662,7 @@ class TweedieRegressor(BaseTransformer):
|
|
666
662
|
output_cols = []
|
667
663
|
|
668
664
|
# Make sure column names are valid snowflake identifiers.
|
665
|
+
assert output_cols is not None # Make MyPy happy
|
669
666
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
670
667
|
|
671
668
|
return rv
|
@@ -676,11 +673,6 @@ class TweedieRegressor(BaseTransformer):
|
|
676
673
|
subproject=_SUBPROJECT,
|
677
674
|
custom_tags=dict([("autogen", True)]),
|
678
675
|
)
|
679
|
-
@telemetry.add_stmt_params_to_df(
|
680
|
-
project=_PROJECT,
|
681
|
-
subproject=_SUBPROJECT,
|
682
|
-
custom_tags=dict([("autogen", True)]),
|
683
|
-
)
|
684
676
|
def predict_proba(
|
685
677
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
686
678
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -721,11 +713,6 @@ class TweedieRegressor(BaseTransformer):
|
|
721
713
|
subproject=_SUBPROJECT,
|
722
714
|
custom_tags=dict([("autogen", True)]),
|
723
715
|
)
|
724
|
-
@telemetry.add_stmt_params_to_df(
|
725
|
-
project=_PROJECT,
|
726
|
-
subproject=_SUBPROJECT,
|
727
|
-
custom_tags=dict([("autogen", True)]),
|
728
|
-
)
|
729
716
|
def predict_log_proba(
|
730
717
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
731
718
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -762,16 +749,6 @@ class TweedieRegressor(BaseTransformer):
|
|
762
749
|
return output_df
|
763
750
|
|
764
751
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
765
|
-
@telemetry.send_api_usage_telemetry(
|
766
|
-
project=_PROJECT,
|
767
|
-
subproject=_SUBPROJECT,
|
768
|
-
custom_tags=dict([("autogen", True)]),
|
769
|
-
)
|
770
|
-
@telemetry.add_stmt_params_to_df(
|
771
|
-
project=_PROJECT,
|
772
|
-
subproject=_SUBPROJECT,
|
773
|
-
custom_tags=dict([("autogen", True)]),
|
774
|
-
)
|
775
752
|
def decision_function(
|
776
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
777
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -872,11 +849,6 @@ class TweedieRegressor(BaseTransformer):
|
|
872
849
|
subproject=_SUBPROJECT,
|
873
850
|
custom_tags=dict([("autogen", True)]),
|
874
851
|
)
|
875
|
-
@telemetry.add_stmt_params_to_df(
|
876
|
-
project=_PROJECT,
|
877
|
-
subproject=_SUBPROJECT,
|
878
|
-
custom_tags=dict([("autogen", True)]),
|
879
|
-
)
|
880
852
|
def kneighbors(
|
881
853
|
self,
|
882
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -936,9 +908,9 @@ class TweedieRegressor(BaseTransformer):
|
|
936
908
|
# For classifier, the type of predict is the same as the type of label
|
937
909
|
if self._sklearn_object._estimator_type == 'classifier':
|
938
910
|
# label columns is the desired type for output
|
939
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
911
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
940
912
|
# rename the output columns
|
941
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
913
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
942
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
943
915
|
([] if self._drop_input_cols else inputs)
|
944
916
|
+ outputs)
|