snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class IncrementalPCA(BaseTransformer):
|
57
58
|
r"""Incremental principal components analysis (IPCA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.IncrementalPCA]
|
@@ -60,6 +61,49 @@ class IncrementalPCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of components to keep. If ``n_components`` is ``None``,
|
65
109
|
then ``n_components`` is set to ``min(n_samples, n_features)``.
|
@@ -83,42 +127,6 @@ class IncrementalPCA(BaseTransformer):
|
|
83
127
|
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
84
128
|
is inferred from the data and set to ``5 * n_features``, to provide a
|
85
129
|
balance between approximation accuracy and memory consumption.
|
86
|
-
|
87
|
-
input_cols: Optional[Union[str, List[str]]]
|
88
|
-
A string or list of strings representing column names that contain features.
|
89
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
90
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
91
|
-
parameters are considered input columns.
|
92
|
-
|
93
|
-
label_cols: Optional[Union[str, List[str]]]
|
94
|
-
A string or list of strings representing column names that contain labels.
|
95
|
-
This is a required param for estimators, as there is no way to infer these
|
96
|
-
columns. If this parameter is not specified, then object is fitted without
|
97
|
-
labels (like a transformer).
|
98
|
-
|
99
|
-
output_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that will store the
|
101
|
-
output of predict and transform operations. The length of output_cols must
|
102
|
-
match the expected number of output columns from the specific estimator or
|
103
|
-
transformer class used.
|
104
|
-
If this parameter is not specified, output column names are derived by
|
105
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
106
|
-
column names work for estimator's predict() method, but output_cols must
|
107
|
-
be set explicitly for transformers.
|
108
|
-
|
109
|
-
sample_weight_col: Optional[str]
|
110
|
-
A string representing the column name containing the sample weights.
|
111
|
-
This argument is only required when working with weighted datasets.
|
112
|
-
|
113
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or a list of strings indicating column names to be excluded from any
|
115
|
-
operations (such as train, transform, or inference). These specified column(s)
|
116
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
117
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
118
|
-
columns, like index columns, during training or inference.
|
119
|
-
|
120
|
-
drop_input_cols: Optional[bool], default=False
|
121
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
122
130
|
"""
|
123
131
|
|
124
132
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -143,7 +151,7 @@ class IncrementalPCA(BaseTransformer):
|
|
143
151
|
self.set_passthrough_cols(passthrough_cols)
|
144
152
|
self.set_drop_input_cols(drop_input_cols)
|
145
153
|
self.set_sample_weight_col(sample_weight_col)
|
146
|
-
deps = set(
|
154
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
147
155
|
|
148
156
|
self._deps = list(deps)
|
149
157
|
|
@@ -155,13 +163,14 @@ class IncrementalPCA(BaseTransformer):
|
|
155
163
|
args=init_args,
|
156
164
|
klass=sklearn.decomposition.IncrementalPCA
|
157
165
|
)
|
158
|
-
self._sklearn_object = sklearn.decomposition.IncrementalPCA(
|
166
|
+
self._sklearn_object: Any = sklearn.decomposition.IncrementalPCA(
|
159
167
|
**cleaned_up_init_args,
|
160
168
|
)
|
161
169
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
162
170
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
163
171
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
164
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IncrementalPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
172
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IncrementalPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
173
|
+
self._autogenerated = True
|
165
174
|
|
166
175
|
def _get_rand_id(self) -> str:
|
167
176
|
"""
|
@@ -217,54 +226,48 @@ class IncrementalPCA(BaseTransformer):
|
|
217
226
|
self
|
218
227
|
"""
|
219
228
|
self._infer_input_output_cols(dataset)
|
220
|
-
if isinstance(dataset,
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
self.
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
229
|
+
if isinstance(dataset, DataFrame):
|
230
|
+
session = dataset._session
|
231
|
+
assert session is not None # keep mypy happy
|
232
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
233
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
234
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
235
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
236
|
+
|
237
|
+
# Specify input columns so column pruning will be enforced
|
238
|
+
selected_cols = self._get_active_columns()
|
239
|
+
if len(selected_cols) > 0:
|
240
|
+
dataset = dataset.select(selected_cols)
|
241
|
+
|
242
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
|
+
|
244
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
245
|
+
if SNOWML_SPROC_ENV in os.environ:
|
246
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
247
|
+
project=_PROJECT,
|
248
|
+
subproject=_SUBPROJECT,
|
249
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IncrementalPCA.__class__.__name__),
|
250
|
+
api_calls=[Session.call],
|
251
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
252
|
+
)
|
253
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
|
+
pd_df.columns = dataset.columns
|
255
|
+
dataset = pd_df
|
256
|
+
|
257
|
+
model_trainer = ModelTrainerBuilder.build(
|
258
|
+
estimator=self._sklearn_object,
|
259
|
+
dataset=dataset,
|
260
|
+
input_cols=self.input_cols,
|
261
|
+
label_cols=self.label_cols,
|
262
|
+
sample_weight_col=self.sample_weight_col,
|
263
|
+
autogenerated=self._autogenerated,
|
264
|
+
subproject=_SUBPROJECT
|
265
|
+
)
|
266
|
+
self._sklearn_object = model_trainer.train()
|
236
267
|
self._is_fitted = True
|
237
268
|
self._get_model_signatures(dataset)
|
238
269
|
return self
|
239
270
|
|
240
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
241
|
-
session = dataset._session
|
242
|
-
assert session is not None # keep mypy happy
|
243
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
-
|
248
|
-
# Specify input columns so column pruning will be enforced
|
249
|
-
selected_cols = self._get_active_columns()
|
250
|
-
if len(selected_cols) > 0:
|
251
|
-
dataset = dataset.select(selected_cols)
|
252
|
-
|
253
|
-
estimator = self._sklearn_object
|
254
|
-
assert estimator is not None # Keep mypy happy
|
255
|
-
|
256
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
257
|
-
|
258
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
259
|
-
dataset,
|
260
|
-
session,
|
261
|
-
estimator,
|
262
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
263
|
-
self.input_cols,
|
264
|
-
self.label_cols,
|
265
|
-
self.sample_weight_col,
|
266
|
-
)
|
267
|
-
|
268
271
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
269
272
|
if self._drop_input_cols:
|
270
273
|
return []
|
@@ -452,11 +455,6 @@ class IncrementalPCA(BaseTransformer):
|
|
452
455
|
subproject=_SUBPROJECT,
|
453
456
|
custom_tags=dict([("autogen", True)]),
|
454
457
|
)
|
455
|
-
@telemetry.add_stmt_params_to_df(
|
456
|
-
project=_PROJECT,
|
457
|
-
subproject=_SUBPROJECT,
|
458
|
-
custom_tags=dict([("autogen", True)]),
|
459
|
-
)
|
460
458
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
461
459
|
"""Method not supported for this class.
|
462
460
|
|
@@ -508,11 +506,6 @@ class IncrementalPCA(BaseTransformer):
|
|
508
506
|
subproject=_SUBPROJECT,
|
509
507
|
custom_tags=dict([("autogen", True)]),
|
510
508
|
)
|
511
|
-
@telemetry.add_stmt_params_to_df(
|
512
|
-
project=_PROJECT,
|
513
|
-
subproject=_SUBPROJECT,
|
514
|
-
custom_tags=dict([("autogen", True)]),
|
515
|
-
)
|
516
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
517
510
|
"""Apply dimensionality reduction to X
|
518
511
|
For more details on this function, see [sklearn.decomposition.IncrementalPCA.transform]
|
@@ -571,7 +564,8 @@ class IncrementalPCA(BaseTransformer):
|
|
571
564
|
if False:
|
572
565
|
self.fit(dataset)
|
573
566
|
assert self._sklearn_object is not None
|
574
|
-
|
567
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
568
|
+
return labels
|
575
569
|
else:
|
576
570
|
raise NotImplementedError
|
577
571
|
|
@@ -607,6 +601,7 @@ class IncrementalPCA(BaseTransformer):
|
|
607
601
|
output_cols = []
|
608
602
|
|
609
603
|
# Make sure column names are valid snowflake identifiers.
|
604
|
+
assert output_cols is not None # Make MyPy happy
|
610
605
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
611
606
|
|
612
607
|
return rv
|
@@ -617,11 +612,6 @@ class IncrementalPCA(BaseTransformer):
|
|
617
612
|
subproject=_SUBPROJECT,
|
618
613
|
custom_tags=dict([("autogen", True)]),
|
619
614
|
)
|
620
|
-
@telemetry.add_stmt_params_to_df(
|
621
|
-
project=_PROJECT,
|
622
|
-
subproject=_SUBPROJECT,
|
623
|
-
custom_tags=dict([("autogen", True)]),
|
624
|
-
)
|
625
615
|
def predict_proba(
|
626
616
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
627
617
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -662,11 +652,6 @@ class IncrementalPCA(BaseTransformer):
|
|
662
652
|
subproject=_SUBPROJECT,
|
663
653
|
custom_tags=dict([("autogen", True)]),
|
664
654
|
)
|
665
|
-
@telemetry.add_stmt_params_to_df(
|
666
|
-
project=_PROJECT,
|
667
|
-
subproject=_SUBPROJECT,
|
668
|
-
custom_tags=dict([("autogen", True)]),
|
669
|
-
)
|
670
655
|
def predict_log_proba(
|
671
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
672
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -703,16 +688,6 @@ class IncrementalPCA(BaseTransformer):
|
|
703
688
|
return output_df
|
704
689
|
|
705
690
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
706
|
-
@telemetry.send_api_usage_telemetry(
|
707
|
-
project=_PROJECT,
|
708
|
-
subproject=_SUBPROJECT,
|
709
|
-
custom_tags=dict([("autogen", True)]),
|
710
|
-
)
|
711
|
-
@telemetry.add_stmt_params_to_df(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
691
|
def decision_function(
|
717
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
718
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,11 +786,6 @@ class IncrementalPCA(BaseTransformer):
|
|
811
786
|
subproject=_SUBPROJECT,
|
812
787
|
custom_tags=dict([("autogen", True)]),
|
813
788
|
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
789
|
def kneighbors(
|
820
790
|
self,
|
821
791
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -875,9 +845,9 @@ class IncrementalPCA(BaseTransformer):
|
|
875
845
|
# For classifier, the type of predict is the same as the type of label
|
876
846
|
if self._sklearn_object._estimator_type == 'classifier':
|
877
847
|
# label columns is the desired type for output
|
878
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
848
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
879
849
|
# rename the output columns
|
880
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
850
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
881
851
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
852
|
([] if self._drop_input_cols else inputs)
|
883
853
|
+ outputs)
|