snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RandomForestClassifier(BaseTransformer):
|
57
58
|
r"""A random forest classifier
|
58
59
|
For more details on this class, see [sklearn.ensemble.RandomForestClassifier]
|
@@ -60,6 +61,51 @@ class RandomForestClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -207,42 +253,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
207
253
|
- If int, then draw `max_samples` samples.
|
208
254
|
- If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
|
209
255
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
210
|
-
|
211
|
-
input_cols: Optional[Union[str, List[str]]]
|
212
|
-
A string or list of strings representing column names that contain features.
|
213
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
214
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
215
|
-
parameters are considered input columns.
|
216
|
-
|
217
|
-
label_cols: Optional[Union[str, List[str]]]
|
218
|
-
A string or list of strings representing column names that contain labels.
|
219
|
-
This is a required param for estimators, as there is no way to infer these
|
220
|
-
columns. If this parameter is not specified, then object is fitted without
|
221
|
-
labels (like a transformer).
|
222
|
-
|
223
|
-
output_cols: Optional[Union[str, List[str]]]
|
224
|
-
A string or list of strings representing column names that will store the
|
225
|
-
output of predict and transform operations. The length of output_cols must
|
226
|
-
match the expected number of output columns from the specific estimator or
|
227
|
-
transformer class used.
|
228
|
-
If this parameter is not specified, output column names are derived by
|
229
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
230
|
-
column names work for estimator's predict() method, but output_cols must
|
231
|
-
be set explicitly for transformers.
|
232
|
-
|
233
|
-
sample_weight_col: Optional[str]
|
234
|
-
A string representing the column name containing the sample weights.
|
235
|
-
This argument is only required when working with weighted datasets.
|
236
|
-
|
237
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
238
|
-
A string or a list of strings indicating column names to be excluded from any
|
239
|
-
operations (such as train, transform, or inference). These specified column(s)
|
240
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
241
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
242
|
-
columns, like index columns, during training or inference.
|
243
|
-
|
244
|
-
drop_input_cols: Optional[bool], default=False
|
245
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
246
256
|
"""
|
247
257
|
|
248
258
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -281,7 +291,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
281
291
|
self.set_passthrough_cols(passthrough_cols)
|
282
292
|
self.set_drop_input_cols(drop_input_cols)
|
283
293
|
self.set_sample_weight_col(sample_weight_col)
|
284
|
-
deps = set(
|
294
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
285
295
|
|
286
296
|
self._deps = list(deps)
|
287
297
|
|
@@ -307,13 +317,14 @@ class RandomForestClassifier(BaseTransformer):
|
|
307
317
|
args=init_args,
|
308
318
|
klass=sklearn.ensemble.RandomForestClassifier
|
309
319
|
)
|
310
|
-
self._sklearn_object = sklearn.ensemble.RandomForestClassifier(
|
320
|
+
self._sklearn_object: Any = sklearn.ensemble.RandomForestClassifier(
|
311
321
|
**cleaned_up_init_args,
|
312
322
|
)
|
313
323
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
314
324
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
315
325
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
316
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
326
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
327
|
+
self._autogenerated = True
|
317
328
|
|
318
329
|
def _get_rand_id(self) -> str:
|
319
330
|
"""
|
@@ -369,54 +380,48 @@ class RandomForestClassifier(BaseTransformer):
|
|
369
380
|
self
|
370
381
|
"""
|
371
382
|
self._infer_input_output_cols(dataset)
|
372
|
-
if isinstance(dataset,
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
self.
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
383
|
+
if isinstance(dataset, DataFrame):
|
384
|
+
session = dataset._session
|
385
|
+
assert session is not None # keep mypy happy
|
386
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
387
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
388
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
389
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
390
|
+
|
391
|
+
# Specify input columns so column pruning will be enforced
|
392
|
+
selected_cols = self._get_active_columns()
|
393
|
+
if len(selected_cols) > 0:
|
394
|
+
dataset = dataset.select(selected_cols)
|
395
|
+
|
396
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
397
|
+
|
398
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
399
|
+
if SNOWML_SPROC_ENV in os.environ:
|
400
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
401
|
+
project=_PROJECT,
|
402
|
+
subproject=_SUBPROJECT,
|
403
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestClassifier.__class__.__name__),
|
404
|
+
api_calls=[Session.call],
|
405
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
406
|
+
)
|
407
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
408
|
+
pd_df.columns = dataset.columns
|
409
|
+
dataset = pd_df
|
410
|
+
|
411
|
+
model_trainer = ModelTrainerBuilder.build(
|
412
|
+
estimator=self._sklearn_object,
|
413
|
+
dataset=dataset,
|
414
|
+
input_cols=self.input_cols,
|
415
|
+
label_cols=self.label_cols,
|
416
|
+
sample_weight_col=self.sample_weight_col,
|
417
|
+
autogenerated=self._autogenerated,
|
418
|
+
subproject=_SUBPROJECT
|
419
|
+
)
|
420
|
+
self._sklearn_object = model_trainer.train()
|
388
421
|
self._is_fitted = True
|
389
422
|
self._get_model_signatures(dataset)
|
390
423
|
return self
|
391
424
|
|
392
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
393
|
-
session = dataset._session
|
394
|
-
assert session is not None # keep mypy happy
|
395
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
396
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
397
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
398
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
399
|
-
|
400
|
-
# Specify input columns so column pruning will be enforced
|
401
|
-
selected_cols = self._get_active_columns()
|
402
|
-
if len(selected_cols) > 0:
|
403
|
-
dataset = dataset.select(selected_cols)
|
404
|
-
|
405
|
-
estimator = self._sklearn_object
|
406
|
-
assert estimator is not None # Keep mypy happy
|
407
|
-
|
408
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
409
|
-
|
410
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
411
|
-
dataset,
|
412
|
-
session,
|
413
|
-
estimator,
|
414
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
415
|
-
self.input_cols,
|
416
|
-
self.label_cols,
|
417
|
-
self.sample_weight_col,
|
418
|
-
)
|
419
|
-
|
420
425
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
421
426
|
if self._drop_input_cols:
|
422
427
|
return []
|
@@ -604,11 +609,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
604
609
|
subproject=_SUBPROJECT,
|
605
610
|
custom_tags=dict([("autogen", True)]),
|
606
611
|
)
|
607
|
-
@telemetry.add_stmt_params_to_df(
|
608
|
-
project=_PROJECT,
|
609
|
-
subproject=_SUBPROJECT,
|
610
|
-
custom_tags=dict([("autogen", True)]),
|
611
|
-
)
|
612
612
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
613
613
|
"""Predict class for X
|
614
614
|
For more details on this function, see [sklearn.ensemble.RandomForestClassifier.predict]
|
@@ -662,11 +662,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
662
662
|
subproject=_SUBPROJECT,
|
663
663
|
custom_tags=dict([("autogen", True)]),
|
664
664
|
)
|
665
|
-
@telemetry.add_stmt_params_to_df(
|
666
|
-
project=_PROJECT,
|
667
|
-
subproject=_SUBPROJECT,
|
668
|
-
custom_tags=dict([("autogen", True)]),
|
669
|
-
)
|
670
665
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
671
666
|
"""Method not supported for this class.
|
672
667
|
|
@@ -723,7 +718,8 @@ class RandomForestClassifier(BaseTransformer):
|
|
723
718
|
if False:
|
724
719
|
self.fit(dataset)
|
725
720
|
assert self._sklearn_object is not None
|
726
|
-
|
721
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
722
|
+
return labels
|
727
723
|
else:
|
728
724
|
raise NotImplementedError
|
729
725
|
|
@@ -759,6 +755,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
759
755
|
output_cols = []
|
760
756
|
|
761
757
|
# Make sure column names are valid snowflake identifiers.
|
758
|
+
assert output_cols is not None # Make MyPy happy
|
762
759
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
763
760
|
|
764
761
|
return rv
|
@@ -769,11 +766,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
769
766
|
subproject=_SUBPROJECT,
|
770
767
|
custom_tags=dict([("autogen", True)]),
|
771
768
|
)
|
772
|
-
@telemetry.add_stmt_params_to_df(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
769
|
def predict_proba(
|
778
770
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
779
771
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -816,11 +808,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
816
808
|
subproject=_SUBPROJECT,
|
817
809
|
custom_tags=dict([("autogen", True)]),
|
818
810
|
)
|
819
|
-
@telemetry.add_stmt_params_to_df(
|
820
|
-
project=_PROJECT,
|
821
|
-
subproject=_SUBPROJECT,
|
822
|
-
custom_tags=dict([("autogen", True)]),
|
823
|
-
)
|
824
811
|
def predict_log_proba(
|
825
812
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
826
813
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -859,16 +846,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
859
846
|
return output_df
|
860
847
|
|
861
848
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
862
|
-
@telemetry.send_api_usage_telemetry(
|
863
|
-
project=_PROJECT,
|
864
|
-
subproject=_SUBPROJECT,
|
865
|
-
custom_tags=dict([("autogen", True)]),
|
866
|
-
)
|
867
|
-
@telemetry.add_stmt_params_to_df(
|
868
|
-
project=_PROJECT,
|
869
|
-
subproject=_SUBPROJECT,
|
870
|
-
custom_tags=dict([("autogen", True)]),
|
871
|
-
)
|
872
849
|
def decision_function(
|
873
850
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
874
851
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -969,11 +946,6 @@ class RandomForestClassifier(BaseTransformer):
|
|
969
946
|
subproject=_SUBPROJECT,
|
970
947
|
custom_tags=dict([("autogen", True)]),
|
971
948
|
)
|
972
|
-
@telemetry.add_stmt_params_to_df(
|
973
|
-
project=_PROJECT,
|
974
|
-
subproject=_SUBPROJECT,
|
975
|
-
custom_tags=dict([("autogen", True)]),
|
976
|
-
)
|
977
949
|
def kneighbors(
|
978
950
|
self,
|
979
951
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1033,9 +1005,9 @@ class RandomForestClassifier(BaseTransformer):
|
|
1033
1005
|
# For classifier, the type of predict is the same as the type of label
|
1034
1006
|
if self._sklearn_object._estimator_type == 'classifier':
|
1035
1007
|
# label columns is the desired type for output
|
1036
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1008
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1037
1009
|
# rename the output columns
|
1038
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1010
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1039
1011
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1040
1012
|
([] if self._drop_input_cols else inputs)
|
1041
1013
|
+ outputs)
|