snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SparsePCA(BaseTransformer):
|
57
58
|
r"""Sparse Principal Components Analysis (SparsePCA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.SparsePCA]
|
@@ -60,6 +61,49 @@ class SparsePCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of sparse atoms to extract. If None, then ``n_components``
|
65
109
|
is set to ``n_features``.
|
@@ -107,42 +151,6 @@ class SparsePCA(BaseTransformer):
|
|
107
151
|
Used during dictionary learning. Pass an int for reproducible results
|
108
152
|
across multiple function calls.
|
109
153
|
See :term:`Glossary <random_state>`.
|
110
|
-
|
111
|
-
input_cols: Optional[Union[str, List[str]]]
|
112
|
-
A string or list of strings representing column names that contain features.
|
113
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
114
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
115
|
-
parameters are considered input columns.
|
116
|
-
|
117
|
-
label_cols: Optional[Union[str, List[str]]]
|
118
|
-
A string or list of strings representing column names that contain labels.
|
119
|
-
This is a required param for estimators, as there is no way to infer these
|
120
|
-
columns. If this parameter is not specified, then object is fitted without
|
121
|
-
labels (like a transformer).
|
122
|
-
|
123
|
-
output_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that will store the
|
125
|
-
output of predict and transform operations. The length of output_cols must
|
126
|
-
match the expected number of output columns from the specific estimator or
|
127
|
-
transformer class used.
|
128
|
-
If this parameter is not specified, output column names are derived by
|
129
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
130
|
-
column names work for estimator's predict() method, but output_cols must
|
131
|
-
be set explicitly for transformers.
|
132
|
-
|
133
|
-
sample_weight_col: Optional[str]
|
134
|
-
A string representing the column name containing the sample weights.
|
135
|
-
This argument is only required when working with weighted datasets.
|
136
|
-
|
137
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
138
|
-
A string or a list of strings indicating column names to be excluded from any
|
139
|
-
operations (such as train, transform, or inference). These specified column(s)
|
140
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
141
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
142
|
-
columns, like index columns, during training or inference.
|
143
|
-
|
144
|
-
drop_input_cols: Optional[bool], default=False
|
145
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
146
154
|
"""
|
147
155
|
|
148
156
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -174,7 +182,7 @@ class SparsePCA(BaseTransformer):
|
|
174
182
|
self.set_passthrough_cols(passthrough_cols)
|
175
183
|
self.set_drop_input_cols(drop_input_cols)
|
176
184
|
self.set_sample_weight_col(sample_weight_col)
|
177
|
-
deps = set(
|
185
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
178
186
|
|
179
187
|
self._deps = list(deps)
|
180
188
|
|
@@ -193,13 +201,14 @@ class SparsePCA(BaseTransformer):
|
|
193
201
|
args=init_args,
|
194
202
|
klass=sklearn.decomposition.SparsePCA
|
195
203
|
)
|
196
|
-
self._sklearn_object = sklearn.decomposition.SparsePCA(
|
204
|
+
self._sklearn_object: Any = sklearn.decomposition.SparsePCA(
|
197
205
|
**cleaned_up_init_args,
|
198
206
|
)
|
199
207
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
200
208
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
201
209
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
202
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
210
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
211
|
+
self._autogenerated = True
|
203
212
|
|
204
213
|
def _get_rand_id(self) -> str:
|
205
214
|
"""
|
@@ -255,54 +264,48 @@ class SparsePCA(BaseTransformer):
|
|
255
264
|
self
|
256
265
|
"""
|
257
266
|
self._infer_input_output_cols(dataset)
|
258
|
-
if isinstance(dataset,
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
self.
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
267
|
+
if isinstance(dataset, DataFrame):
|
268
|
+
session = dataset._session
|
269
|
+
assert session is not None # keep mypy happy
|
270
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
271
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
272
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
273
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
274
|
+
|
275
|
+
# Specify input columns so column pruning will be enforced
|
276
|
+
selected_cols = self._get_active_columns()
|
277
|
+
if len(selected_cols) > 0:
|
278
|
+
dataset = dataset.select(selected_cols)
|
279
|
+
|
280
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
281
|
+
|
282
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
283
|
+
if SNOWML_SPROC_ENV in os.environ:
|
284
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
285
|
+
project=_PROJECT,
|
286
|
+
subproject=_SUBPROJECT,
|
287
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SparsePCA.__class__.__name__),
|
288
|
+
api_calls=[Session.call],
|
289
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
290
|
+
)
|
291
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
292
|
+
pd_df.columns = dataset.columns
|
293
|
+
dataset = pd_df
|
294
|
+
|
295
|
+
model_trainer = ModelTrainerBuilder.build(
|
296
|
+
estimator=self._sklearn_object,
|
297
|
+
dataset=dataset,
|
298
|
+
input_cols=self.input_cols,
|
299
|
+
label_cols=self.label_cols,
|
300
|
+
sample_weight_col=self.sample_weight_col,
|
301
|
+
autogenerated=self._autogenerated,
|
302
|
+
subproject=_SUBPROJECT
|
303
|
+
)
|
304
|
+
self._sklearn_object = model_trainer.train()
|
274
305
|
self._is_fitted = True
|
275
306
|
self._get_model_signatures(dataset)
|
276
307
|
return self
|
277
308
|
|
278
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
279
|
-
session = dataset._session
|
280
|
-
assert session is not None # keep mypy happy
|
281
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
282
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
283
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
284
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
285
|
-
|
286
|
-
# Specify input columns so column pruning will be enforced
|
287
|
-
selected_cols = self._get_active_columns()
|
288
|
-
if len(selected_cols) > 0:
|
289
|
-
dataset = dataset.select(selected_cols)
|
290
|
-
|
291
|
-
estimator = self._sklearn_object
|
292
|
-
assert estimator is not None # Keep mypy happy
|
293
|
-
|
294
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
|
-
|
296
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
297
|
-
dataset,
|
298
|
-
session,
|
299
|
-
estimator,
|
300
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
301
|
-
self.input_cols,
|
302
|
-
self.label_cols,
|
303
|
-
self.sample_weight_col,
|
304
|
-
)
|
305
|
-
|
306
309
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
307
310
|
if self._drop_input_cols:
|
308
311
|
return []
|
@@ -490,11 +493,6 @@ class SparsePCA(BaseTransformer):
|
|
490
493
|
subproject=_SUBPROJECT,
|
491
494
|
custom_tags=dict([("autogen", True)]),
|
492
495
|
)
|
493
|
-
@telemetry.add_stmt_params_to_df(
|
494
|
-
project=_PROJECT,
|
495
|
-
subproject=_SUBPROJECT,
|
496
|
-
custom_tags=dict([("autogen", True)]),
|
497
|
-
)
|
498
496
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
499
497
|
"""Method not supported for this class.
|
500
498
|
|
@@ -546,11 +544,6 @@ class SparsePCA(BaseTransformer):
|
|
546
544
|
subproject=_SUBPROJECT,
|
547
545
|
custom_tags=dict([("autogen", True)]),
|
548
546
|
)
|
549
|
-
@telemetry.add_stmt_params_to_df(
|
550
|
-
project=_PROJECT,
|
551
|
-
subproject=_SUBPROJECT,
|
552
|
-
custom_tags=dict([("autogen", True)]),
|
553
|
-
)
|
554
547
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
555
548
|
"""Least Squares projection of the data onto the sparse components
|
556
549
|
For more details on this function, see [sklearn.decomposition.SparsePCA.transform]
|
@@ -609,7 +602,8 @@ class SparsePCA(BaseTransformer):
|
|
609
602
|
if False:
|
610
603
|
self.fit(dataset)
|
611
604
|
assert self._sklearn_object is not None
|
612
|
-
|
605
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
606
|
+
return labels
|
613
607
|
else:
|
614
608
|
raise NotImplementedError
|
615
609
|
|
@@ -645,6 +639,7 @@ class SparsePCA(BaseTransformer):
|
|
645
639
|
output_cols = []
|
646
640
|
|
647
641
|
# Make sure column names are valid snowflake identifiers.
|
642
|
+
assert output_cols is not None # Make MyPy happy
|
648
643
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
644
|
|
650
645
|
return rv
|
@@ -655,11 +650,6 @@ class SparsePCA(BaseTransformer):
|
|
655
650
|
subproject=_SUBPROJECT,
|
656
651
|
custom_tags=dict([("autogen", True)]),
|
657
652
|
)
|
658
|
-
@telemetry.add_stmt_params_to_df(
|
659
|
-
project=_PROJECT,
|
660
|
-
subproject=_SUBPROJECT,
|
661
|
-
custom_tags=dict([("autogen", True)]),
|
662
|
-
)
|
663
653
|
def predict_proba(
|
664
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
665
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +690,6 @@ class SparsePCA(BaseTransformer):
|
|
700
690
|
subproject=_SUBPROJECT,
|
701
691
|
custom_tags=dict([("autogen", True)]),
|
702
692
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
693
|
def predict_log_proba(
|
709
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,16 +726,6 @@ class SparsePCA(BaseTransformer):
|
|
741
726
|
return output_df
|
742
727
|
|
743
728
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
744
|
-
@telemetry.send_api_usage_telemetry(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
|
-
@telemetry.add_stmt_params_to_df(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
729
|
def decision_function(
|
755
730
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
756
731
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -849,11 +824,6 @@ class SparsePCA(BaseTransformer):
|
|
849
824
|
subproject=_SUBPROJECT,
|
850
825
|
custom_tags=dict([("autogen", True)]),
|
851
826
|
)
|
852
|
-
@telemetry.add_stmt_params_to_df(
|
853
|
-
project=_PROJECT,
|
854
|
-
subproject=_SUBPROJECT,
|
855
|
-
custom_tags=dict([("autogen", True)]),
|
856
|
-
)
|
857
827
|
def kneighbors(
|
858
828
|
self,
|
859
829
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -913,9 +883,9 @@ class SparsePCA(BaseTransformer):
|
|
913
883
|
# For classifier, the type of predict is the same as the type of label
|
914
884
|
if self._sklearn_object._estimator_type == 'classifier':
|
915
885
|
# label columns is the desired type for output
|
916
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
886
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
917
887
|
# rename the output columns
|
918
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
888
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
919
889
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
890
|
([] if self._drop_input_cols else inputs)
|
921
891
|
+ outputs)
|