snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class HistGradientBoostingClassifier(BaseTransformer):
|
57
58
|
r"""Histogram-based Gradient Boosting Classification Tree
|
58
59
|
For more details on this class, see [sklearn.ensemble.HistGradientBoostingClassifier]
|
@@ -60,6 +61,51 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'log_loss'}, default='log_loss'
|
64
110
|
The loss function to use in the boosting process.
|
65
111
|
|
@@ -200,42 +246,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
200
246
|
as `n_samples / (n_classes * np.bincount(y))`.
|
201
247
|
Note that these weights will be multiplied with sample_weight (passed
|
202
248
|
through the fit method) if `sample_weight` is specified.
|
203
|
-
|
204
|
-
input_cols: Optional[Union[str, List[str]]]
|
205
|
-
A string or list of strings representing column names that contain features.
|
206
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
207
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
208
|
-
parameters are considered input columns.
|
209
|
-
|
210
|
-
label_cols: Optional[Union[str, List[str]]]
|
211
|
-
A string or list of strings representing column names that contain labels.
|
212
|
-
This is a required param for estimators, as there is no way to infer these
|
213
|
-
columns. If this parameter is not specified, then object is fitted without
|
214
|
-
labels (like a transformer).
|
215
|
-
|
216
|
-
output_cols: Optional[Union[str, List[str]]]
|
217
|
-
A string or list of strings representing column names that will store the
|
218
|
-
output of predict and transform operations. The length of output_cols must
|
219
|
-
match the expected number of output columns from the specific estimator or
|
220
|
-
transformer class used.
|
221
|
-
If this parameter is not specified, output column names are derived by
|
222
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
223
|
-
column names work for estimator's predict() method, but output_cols must
|
224
|
-
be set explicitly for transformers.
|
225
|
-
|
226
|
-
sample_weight_col: Optional[str]
|
227
|
-
A string representing the column name containing the sample weights.
|
228
|
-
This argument is only required when working with weighted datasets.
|
229
|
-
|
230
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
231
|
-
A string or a list of strings indicating column names to be excluded from any
|
232
|
-
operations (such as train, transform, or inference). These specified column(s)
|
233
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
234
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
235
|
-
columns, like index columns, during training or inference.
|
236
|
-
|
237
|
-
drop_input_cols: Optional[bool], default=False
|
238
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
239
249
|
"""
|
240
250
|
|
241
251
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -276,7 +286,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
276
286
|
self.set_passthrough_cols(passthrough_cols)
|
277
287
|
self.set_drop_input_cols(drop_input_cols)
|
278
288
|
self.set_sample_weight_col(sample_weight_col)
|
279
|
-
deps = set(
|
289
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
280
290
|
|
281
291
|
self._deps = list(deps)
|
282
292
|
|
@@ -304,13 +314,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
304
314
|
args=init_args,
|
305
315
|
klass=sklearn.ensemble.HistGradientBoostingClassifier
|
306
316
|
)
|
307
|
-
self._sklearn_object = sklearn.ensemble.HistGradientBoostingClassifier(
|
317
|
+
self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingClassifier(
|
308
318
|
**cleaned_up_init_args,
|
309
319
|
)
|
310
320
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
311
321
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
312
322
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
313
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
323
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
324
|
+
self._autogenerated = True
|
314
325
|
|
315
326
|
def _get_rand_id(self) -> str:
|
316
327
|
"""
|
@@ -366,54 +377,48 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
366
377
|
self
|
367
378
|
"""
|
368
379
|
self._infer_input_output_cols(dataset)
|
369
|
-
if isinstance(dataset,
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
self.
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
380
|
+
if isinstance(dataset, DataFrame):
|
381
|
+
session = dataset._session
|
382
|
+
assert session is not None # keep mypy happy
|
383
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
384
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
385
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
386
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
387
|
+
|
388
|
+
# Specify input columns so column pruning will be enforced
|
389
|
+
selected_cols = self._get_active_columns()
|
390
|
+
if len(selected_cols) > 0:
|
391
|
+
dataset = dataset.select(selected_cols)
|
392
|
+
|
393
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
394
|
+
|
395
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
396
|
+
if SNOWML_SPROC_ENV in os.environ:
|
397
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
398
|
+
project=_PROJECT,
|
399
|
+
subproject=_SUBPROJECT,
|
400
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__),
|
401
|
+
api_calls=[Session.call],
|
402
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
403
|
+
)
|
404
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
405
|
+
pd_df.columns = dataset.columns
|
406
|
+
dataset = pd_df
|
407
|
+
|
408
|
+
model_trainer = ModelTrainerBuilder.build(
|
409
|
+
estimator=self._sklearn_object,
|
410
|
+
dataset=dataset,
|
411
|
+
input_cols=self.input_cols,
|
412
|
+
label_cols=self.label_cols,
|
413
|
+
sample_weight_col=self.sample_weight_col,
|
414
|
+
autogenerated=self._autogenerated,
|
415
|
+
subproject=_SUBPROJECT
|
416
|
+
)
|
417
|
+
self._sklearn_object = model_trainer.train()
|
385
418
|
self._is_fitted = True
|
386
419
|
self._get_model_signatures(dataset)
|
387
420
|
return self
|
388
421
|
|
389
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
390
|
-
session = dataset._session
|
391
|
-
assert session is not None # keep mypy happy
|
392
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
393
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
394
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
395
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
396
|
-
|
397
|
-
# Specify input columns so column pruning will be enforced
|
398
|
-
selected_cols = self._get_active_columns()
|
399
|
-
if len(selected_cols) > 0:
|
400
|
-
dataset = dataset.select(selected_cols)
|
401
|
-
|
402
|
-
estimator = self._sklearn_object
|
403
|
-
assert estimator is not None # Keep mypy happy
|
404
|
-
|
405
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
406
|
-
|
407
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
408
|
-
dataset,
|
409
|
-
session,
|
410
|
-
estimator,
|
411
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
412
|
-
self.input_cols,
|
413
|
-
self.label_cols,
|
414
|
-
self.sample_weight_col,
|
415
|
-
)
|
416
|
-
|
417
422
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
418
423
|
if self._drop_input_cols:
|
419
424
|
return []
|
@@ -601,11 +606,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
601
606
|
subproject=_SUBPROJECT,
|
602
607
|
custom_tags=dict([("autogen", True)]),
|
603
608
|
)
|
604
|
-
@telemetry.add_stmt_params_to_df(
|
605
|
-
project=_PROJECT,
|
606
|
-
subproject=_SUBPROJECT,
|
607
|
-
custom_tags=dict([("autogen", True)]),
|
608
|
-
)
|
609
609
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
610
610
|
"""Predict classes for X
|
611
611
|
For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.predict]
|
@@ -659,11 +659,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
659
659
|
subproject=_SUBPROJECT,
|
660
660
|
custom_tags=dict([("autogen", True)]),
|
661
661
|
)
|
662
|
-
@telemetry.add_stmt_params_to_df(
|
663
|
-
project=_PROJECT,
|
664
|
-
subproject=_SUBPROJECT,
|
665
|
-
custom_tags=dict([("autogen", True)]),
|
666
|
-
)
|
667
662
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
668
663
|
"""Method not supported for this class.
|
669
664
|
|
@@ -720,7 +715,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
720
715
|
if False:
|
721
716
|
self.fit(dataset)
|
722
717
|
assert self._sklearn_object is not None
|
723
|
-
|
718
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
719
|
+
return labels
|
724
720
|
else:
|
725
721
|
raise NotImplementedError
|
726
722
|
|
@@ -756,6 +752,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
756
752
|
output_cols = []
|
757
753
|
|
758
754
|
# Make sure column names are valid snowflake identifiers.
|
755
|
+
assert output_cols is not None # Make MyPy happy
|
759
756
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
760
757
|
|
761
758
|
return rv
|
@@ -766,11 +763,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
766
763
|
subproject=_SUBPROJECT,
|
767
764
|
custom_tags=dict([("autogen", True)]),
|
768
765
|
)
|
769
|
-
@telemetry.add_stmt_params_to_df(
|
770
|
-
project=_PROJECT,
|
771
|
-
subproject=_SUBPROJECT,
|
772
|
-
custom_tags=dict([("autogen", True)]),
|
773
|
-
)
|
774
766
|
def predict_proba(
|
775
767
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
776
768
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -813,11 +805,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
813
805
|
subproject=_SUBPROJECT,
|
814
806
|
custom_tags=dict([("autogen", True)]),
|
815
807
|
)
|
816
|
-
@telemetry.add_stmt_params_to_df(
|
817
|
-
project=_PROJECT,
|
818
|
-
subproject=_SUBPROJECT,
|
819
|
-
custom_tags=dict([("autogen", True)]),
|
820
|
-
)
|
821
808
|
def predict_log_proba(
|
822
809
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
823
810
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -856,16 +843,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
856
843
|
return output_df
|
857
844
|
|
858
845
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
859
|
-
@telemetry.send_api_usage_telemetry(
|
860
|
-
project=_PROJECT,
|
861
|
-
subproject=_SUBPROJECT,
|
862
|
-
custom_tags=dict([("autogen", True)]),
|
863
|
-
)
|
864
|
-
@telemetry.add_stmt_params_to_df(
|
865
|
-
project=_PROJECT,
|
866
|
-
subproject=_SUBPROJECT,
|
867
|
-
custom_tags=dict([("autogen", True)]),
|
868
|
-
)
|
869
846
|
def decision_function(
|
870
847
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
871
848
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -968,11 +945,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
968
945
|
subproject=_SUBPROJECT,
|
969
946
|
custom_tags=dict([("autogen", True)]),
|
970
947
|
)
|
971
|
-
@telemetry.add_stmt_params_to_df(
|
972
|
-
project=_PROJECT,
|
973
|
-
subproject=_SUBPROJECT,
|
974
|
-
custom_tags=dict([("autogen", True)]),
|
975
|
-
)
|
976
948
|
def kneighbors(
|
977
949
|
self,
|
978
950
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1032,9 +1004,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
1032
1004
|
# For classifier, the type of predict is the same as the type of label
|
1033
1005
|
if self._sklearn_object._estimator_type == 'classifier':
|
1034
1006
|
# label columns is the desired type for output
|
1035
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1007
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1036
1008
|
# rename the output columns
|
1037
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1009
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1038
1010
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1039
1011
|
([] if self._drop_input_cols else inputs)
|
1040
1012
|
+ outputs)
|