snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HistGradientBoostingClassifier(BaseTransformer):
57
58
  r"""Histogram-based Gradient Boosting Classification Tree
58
59
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingClassifier]
@@ -60,6 +61,51 @@ class HistGradientBoostingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'log_loss'}, default='log_loss'
64
110
  The loss function to use in the boosting process.
65
111
 
@@ -200,42 +246,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
200
246
  as `n_samples / (n_classes * np.bincount(y))`.
201
247
  Note that these weights will be multiplied with sample_weight (passed
202
248
  through the fit method) if `sample_weight` is specified.
203
-
204
- input_cols: Optional[Union[str, List[str]]]
205
- A string or list of strings representing column names that contain features.
206
- If this parameter is not specified, all columns in the input DataFrame except
207
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
208
- parameters are considered input columns.
209
-
210
- label_cols: Optional[Union[str, List[str]]]
211
- A string or list of strings representing column names that contain labels.
212
- This is a required param for estimators, as there is no way to infer these
213
- columns. If this parameter is not specified, then object is fitted without
214
- labels (like a transformer).
215
-
216
- output_cols: Optional[Union[str, List[str]]]
217
- A string or list of strings representing column names that will store the
218
- output of predict and transform operations. The length of output_cols must
219
- match the expected number of output columns from the specific estimator or
220
- transformer class used.
221
- If this parameter is not specified, output column names are derived by
222
- adding an OUTPUT_ prefix to the label column names. These inferred output
223
- column names work for estimator's predict() method, but output_cols must
224
- be set explicitly for transformers.
225
-
226
- sample_weight_col: Optional[str]
227
- A string representing the column name containing the sample weights.
228
- This argument is only required when working with weighted datasets.
229
-
230
- passthrough_cols: Optional[Union[str, List[str]]]
231
- A string or a list of strings indicating column names to be excluded from any
232
- operations (such as train, transform, or inference). These specified column(s)
233
- will remain untouched throughout the process. This option is helpful in scenarios
234
- requiring automatic input_cols inference, but need to avoid using specific
235
- columns, like index columns, during training or inference.
236
-
237
- drop_input_cols: Optional[bool], default=False
238
- If set, the response of predict(), transform() methods will not contain input columns.
239
249
  """
240
250
 
241
251
  def __init__( # type: ignore[no-untyped-def]
@@ -276,7 +286,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
276
286
  self.set_passthrough_cols(passthrough_cols)
277
287
  self.set_drop_input_cols(drop_input_cols)
278
288
  self.set_sample_weight_col(sample_weight_col)
279
- deps = set(SklearnWrapperProvider().dependencies)
289
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
280
290
 
281
291
  self._deps = list(deps)
282
292
 
@@ -304,13 +314,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
304
314
  args=init_args,
305
315
  klass=sklearn.ensemble.HistGradientBoostingClassifier
306
316
  )
307
- self._sklearn_object = sklearn.ensemble.HistGradientBoostingClassifier(
317
+ self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingClassifier(
308
318
  **cleaned_up_init_args,
309
319
  )
310
320
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
311
321
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
312
322
  self._snowpark_cols: Optional[List[str]] = self.input_cols
313
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
323
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
324
+ self._autogenerated = True
314
325
 
315
326
  def _get_rand_id(self) -> str:
316
327
  """
@@ -366,54 +377,48 @@ class HistGradientBoostingClassifier(BaseTransformer):
366
377
  self
367
378
  """
368
379
  self._infer_input_output_cols(dataset)
369
- if isinstance(dataset, pd.DataFrame):
370
- assert self._sklearn_object is not None # keep mypy happy
371
- self._sklearn_object = self._handlers.fit_pandas(
372
- dataset,
373
- self._sklearn_object,
374
- self.input_cols,
375
- self.label_cols,
376
- self.sample_weight_col
377
- )
378
- elif isinstance(dataset, DataFrame):
379
- self._fit_snowpark(dataset)
380
- else:
381
- raise TypeError(
382
- f"Unexpected dataset type: {type(dataset)}."
383
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
384
- )
380
+ if isinstance(dataset, DataFrame):
381
+ session = dataset._session
382
+ assert session is not None # keep mypy happy
383
+ # Validate that key package version in user workspace are supported in snowflake conda channel
384
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
385
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
386
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
387
+
388
+ # Specify input columns so column pruning will be enforced
389
+ selected_cols = self._get_active_columns()
390
+ if len(selected_cols) > 0:
391
+ dataset = dataset.select(selected_cols)
392
+
393
+ self._snowpark_cols = dataset.select(self.input_cols).columns
394
+
395
+ # If we are already in a stored procedure, no need to kick off another one.
396
+ if SNOWML_SPROC_ENV in os.environ:
397
+ statement_params = telemetry.get_function_usage_statement_params(
398
+ project=_PROJECT,
399
+ subproject=_SUBPROJECT,
400
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__),
401
+ api_calls=[Session.call],
402
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
403
+ )
404
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
405
+ pd_df.columns = dataset.columns
406
+ dataset = pd_df
407
+
408
+ model_trainer = ModelTrainerBuilder.build(
409
+ estimator=self._sklearn_object,
410
+ dataset=dataset,
411
+ input_cols=self.input_cols,
412
+ label_cols=self.label_cols,
413
+ sample_weight_col=self.sample_weight_col,
414
+ autogenerated=self._autogenerated,
415
+ subproject=_SUBPROJECT
416
+ )
417
+ self._sklearn_object = model_trainer.train()
385
418
  self._is_fitted = True
386
419
  self._get_model_signatures(dataset)
387
420
  return self
388
421
 
389
- def _fit_snowpark(self, dataset: DataFrame) -> None:
390
- session = dataset._session
391
- assert session is not None # keep mypy happy
392
- # Validate that key package version in user workspace are supported in snowflake conda channel
393
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
394
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
395
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
396
-
397
- # Specify input columns so column pruning will be enforced
398
- selected_cols = self._get_active_columns()
399
- if len(selected_cols) > 0:
400
- dataset = dataset.select(selected_cols)
401
-
402
- estimator = self._sklearn_object
403
- assert estimator is not None # Keep mypy happy
404
-
405
- self._snowpark_cols = dataset.select(self.input_cols).columns
406
-
407
- self._sklearn_object = self._handlers.fit_snowpark(
408
- dataset,
409
- session,
410
- estimator,
411
- ["snowflake-snowpark-python"] + self._get_dependencies(),
412
- self.input_cols,
413
- self.label_cols,
414
- self.sample_weight_col,
415
- )
416
-
417
422
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
418
423
  if self._drop_input_cols:
419
424
  return []
@@ -601,11 +606,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
601
606
  subproject=_SUBPROJECT,
602
607
  custom_tags=dict([("autogen", True)]),
603
608
  )
604
- @telemetry.add_stmt_params_to_df(
605
- project=_PROJECT,
606
- subproject=_SUBPROJECT,
607
- custom_tags=dict([("autogen", True)]),
608
- )
609
609
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
610
610
  """Predict classes for X
611
611
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.predict]
@@ -659,11 +659,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
659
659
  subproject=_SUBPROJECT,
660
660
  custom_tags=dict([("autogen", True)]),
661
661
  )
662
- @telemetry.add_stmt_params_to_df(
663
- project=_PROJECT,
664
- subproject=_SUBPROJECT,
665
- custom_tags=dict([("autogen", True)]),
666
- )
667
662
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
668
663
  """Method not supported for this class.
669
664
 
@@ -720,7 +715,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
720
715
  if False:
721
716
  self.fit(dataset)
722
717
  assert self._sklearn_object is not None
723
- return self._sklearn_object.labels_
718
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
719
+ return labels
724
720
  else:
725
721
  raise NotImplementedError
726
722
 
@@ -756,6 +752,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
756
752
  output_cols = []
757
753
 
758
754
  # Make sure column names are valid snowflake identifiers.
755
+ assert output_cols is not None # Make MyPy happy
759
756
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
760
757
 
761
758
  return rv
@@ -766,11 +763,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
766
763
  subproject=_SUBPROJECT,
767
764
  custom_tags=dict([("autogen", True)]),
768
765
  )
769
- @telemetry.add_stmt_params_to_df(
770
- project=_PROJECT,
771
- subproject=_SUBPROJECT,
772
- custom_tags=dict([("autogen", True)]),
773
- )
774
766
  def predict_proba(
775
767
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
776
768
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -813,11 +805,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
813
805
  subproject=_SUBPROJECT,
814
806
  custom_tags=dict([("autogen", True)]),
815
807
  )
816
- @telemetry.add_stmt_params_to_df(
817
- project=_PROJECT,
818
- subproject=_SUBPROJECT,
819
- custom_tags=dict([("autogen", True)]),
820
- )
821
808
  def predict_log_proba(
822
809
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
823
810
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -856,16 +843,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
856
843
  return output_df
857
844
 
858
845
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
859
- @telemetry.send_api_usage_telemetry(
860
- project=_PROJECT,
861
- subproject=_SUBPROJECT,
862
- custom_tags=dict([("autogen", True)]),
863
- )
864
- @telemetry.add_stmt_params_to_df(
865
- project=_PROJECT,
866
- subproject=_SUBPROJECT,
867
- custom_tags=dict([("autogen", True)]),
868
- )
869
846
  def decision_function(
870
847
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
871
848
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -968,11 +945,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
968
945
  subproject=_SUBPROJECT,
969
946
  custom_tags=dict([("autogen", True)]),
970
947
  )
971
- @telemetry.add_stmt_params_to_df(
972
- project=_PROJECT,
973
- subproject=_SUBPROJECT,
974
- custom_tags=dict([("autogen", True)]),
975
- )
976
948
  def kneighbors(
977
949
  self,
978
950
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1032,9 +1004,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
1032
1004
  # For classifier, the type of predict is the same as the type of label
1033
1005
  if self._sklearn_object._estimator_type == 'classifier':
1034
1006
  # label columns is the desired type for output
1035
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1007
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1036
1008
  # rename the output columns
1037
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1009
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1038
1010
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
1011
  ([] if self._drop_input_cols else inputs)
1040
1012
  + outputs)