snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearSVC(BaseTransformer):
|
57
58
|
r"""Linear Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.LinearSVC]
|
@@ -60,6 +61,51 @@ class LinearSVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
penalty: {'l1', 'l2'}, default='l2'
|
64
110
|
Specifies the norm used in the penalization. The 'l2'
|
65
111
|
penalty is the standard used in SVC. The 'l1' leads to ``coef_``
|
@@ -137,42 +183,6 @@ class LinearSVC(BaseTransformer):
|
|
137
183
|
|
138
184
|
max_iter: int, default=1000
|
139
185
|
The maximum number of iterations to be run.
|
140
|
-
|
141
|
-
input_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that contain features.
|
143
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
144
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
145
|
-
parameters are considered input columns.
|
146
|
-
|
147
|
-
label_cols: Optional[Union[str, List[str]]]
|
148
|
-
A string or list of strings representing column names that contain labels.
|
149
|
-
This is a required param for estimators, as there is no way to infer these
|
150
|
-
columns. If this parameter is not specified, then object is fitted without
|
151
|
-
labels (like a transformer).
|
152
|
-
|
153
|
-
output_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that will store the
|
155
|
-
output of predict and transform operations. The length of output_cols must
|
156
|
-
match the expected number of output columns from the specific estimator or
|
157
|
-
transformer class used.
|
158
|
-
If this parameter is not specified, output column names are derived by
|
159
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
160
|
-
column names work for estimator's predict() method, but output_cols must
|
161
|
-
be set explicitly for transformers.
|
162
|
-
|
163
|
-
sample_weight_col: Optional[str]
|
164
|
-
A string representing the column name containing the sample weights.
|
165
|
-
This argument is only required when working with weighted datasets.
|
166
|
-
|
167
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
168
|
-
A string or a list of strings indicating column names to be excluded from any
|
169
|
-
operations (such as train, transform, or inference). These specified column(s)
|
170
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
171
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
172
|
-
columns, like index columns, during training or inference.
|
173
|
-
|
174
|
-
drop_input_cols: Optional[bool], default=False
|
175
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
176
186
|
"""
|
177
187
|
|
178
188
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -205,7 +215,7 @@ class LinearSVC(BaseTransformer):
|
|
205
215
|
self.set_passthrough_cols(passthrough_cols)
|
206
216
|
self.set_drop_input_cols(drop_input_cols)
|
207
217
|
self.set_sample_weight_col(sample_weight_col)
|
208
|
-
deps = set(
|
218
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
209
219
|
|
210
220
|
self._deps = list(deps)
|
211
221
|
|
@@ -225,13 +235,14 @@ class LinearSVC(BaseTransformer):
|
|
225
235
|
args=init_args,
|
226
236
|
klass=sklearn.svm.LinearSVC
|
227
237
|
)
|
228
|
-
self._sklearn_object = sklearn.svm.LinearSVC(
|
238
|
+
self._sklearn_object: Any = sklearn.svm.LinearSVC(
|
229
239
|
**cleaned_up_init_args,
|
230
240
|
)
|
231
241
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
232
242
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
233
243
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
234
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
244
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
245
|
+
self._autogenerated = True
|
235
246
|
|
236
247
|
def _get_rand_id(self) -> str:
|
237
248
|
"""
|
@@ -287,54 +298,48 @@ class LinearSVC(BaseTransformer):
|
|
287
298
|
self
|
288
299
|
"""
|
289
300
|
self._infer_input_output_cols(dataset)
|
290
|
-
if isinstance(dataset,
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
self.
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
301
|
+
if isinstance(dataset, DataFrame):
|
302
|
+
session = dataset._session
|
303
|
+
assert session is not None # keep mypy happy
|
304
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
305
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
306
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
307
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
308
|
+
|
309
|
+
# Specify input columns so column pruning will be enforced
|
310
|
+
selected_cols = self._get_active_columns()
|
311
|
+
if len(selected_cols) > 0:
|
312
|
+
dataset = dataset.select(selected_cols)
|
313
|
+
|
314
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
315
|
+
|
316
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
317
|
+
if SNOWML_SPROC_ENV in os.environ:
|
318
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
319
|
+
project=_PROJECT,
|
320
|
+
subproject=_SUBPROJECT,
|
321
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVC.__class__.__name__),
|
322
|
+
api_calls=[Session.call],
|
323
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
324
|
+
)
|
325
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
326
|
+
pd_df.columns = dataset.columns
|
327
|
+
dataset = pd_df
|
328
|
+
|
329
|
+
model_trainer = ModelTrainerBuilder.build(
|
330
|
+
estimator=self._sklearn_object,
|
331
|
+
dataset=dataset,
|
332
|
+
input_cols=self.input_cols,
|
333
|
+
label_cols=self.label_cols,
|
334
|
+
sample_weight_col=self.sample_weight_col,
|
335
|
+
autogenerated=self._autogenerated,
|
336
|
+
subproject=_SUBPROJECT
|
337
|
+
)
|
338
|
+
self._sklearn_object = model_trainer.train()
|
306
339
|
self._is_fitted = True
|
307
340
|
self._get_model_signatures(dataset)
|
308
341
|
return self
|
309
342
|
|
310
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
311
|
-
session = dataset._session
|
312
|
-
assert session is not None # keep mypy happy
|
313
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
314
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
315
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
316
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
-
|
318
|
-
# Specify input columns so column pruning will be enforced
|
319
|
-
selected_cols = self._get_active_columns()
|
320
|
-
if len(selected_cols) > 0:
|
321
|
-
dataset = dataset.select(selected_cols)
|
322
|
-
|
323
|
-
estimator = self._sklearn_object
|
324
|
-
assert estimator is not None # Keep mypy happy
|
325
|
-
|
326
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
|
-
|
328
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
329
|
-
dataset,
|
330
|
-
session,
|
331
|
-
estimator,
|
332
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
333
|
-
self.input_cols,
|
334
|
-
self.label_cols,
|
335
|
-
self.sample_weight_col,
|
336
|
-
)
|
337
|
-
|
338
343
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
339
344
|
if self._drop_input_cols:
|
340
345
|
return []
|
@@ -522,11 +527,6 @@ class LinearSVC(BaseTransformer):
|
|
522
527
|
subproject=_SUBPROJECT,
|
523
528
|
custom_tags=dict([("autogen", True)]),
|
524
529
|
)
|
525
|
-
@telemetry.add_stmt_params_to_df(
|
526
|
-
project=_PROJECT,
|
527
|
-
subproject=_SUBPROJECT,
|
528
|
-
custom_tags=dict([("autogen", True)]),
|
529
|
-
)
|
530
530
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
531
531
|
"""Predict class labels for samples in X
|
532
532
|
For more details on this function, see [sklearn.svm.LinearSVC.predict]
|
@@ -580,11 +580,6 @@ class LinearSVC(BaseTransformer):
|
|
580
580
|
subproject=_SUBPROJECT,
|
581
581
|
custom_tags=dict([("autogen", True)]),
|
582
582
|
)
|
583
|
-
@telemetry.add_stmt_params_to_df(
|
584
|
-
project=_PROJECT,
|
585
|
-
subproject=_SUBPROJECT,
|
586
|
-
custom_tags=dict([("autogen", True)]),
|
587
|
-
)
|
588
583
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
589
584
|
"""Method not supported for this class.
|
590
585
|
|
@@ -641,7 +636,8 @@ class LinearSVC(BaseTransformer):
|
|
641
636
|
if False:
|
642
637
|
self.fit(dataset)
|
643
638
|
assert self._sklearn_object is not None
|
644
|
-
|
639
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
640
|
+
return labels
|
645
641
|
else:
|
646
642
|
raise NotImplementedError
|
647
643
|
|
@@ -677,6 +673,7 @@ class LinearSVC(BaseTransformer):
|
|
677
673
|
output_cols = []
|
678
674
|
|
679
675
|
# Make sure column names are valid snowflake identifiers.
|
676
|
+
assert output_cols is not None # Make MyPy happy
|
680
677
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
681
678
|
|
682
679
|
return rv
|
@@ -687,11 +684,6 @@ class LinearSVC(BaseTransformer):
|
|
687
684
|
subproject=_SUBPROJECT,
|
688
685
|
custom_tags=dict([("autogen", True)]),
|
689
686
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
687
|
def predict_proba(
|
696
688
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
697
689
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,11 +724,6 @@ class LinearSVC(BaseTransformer):
|
|
732
724
|
subproject=_SUBPROJECT,
|
733
725
|
custom_tags=dict([("autogen", True)]),
|
734
726
|
)
|
735
|
-
@telemetry.add_stmt_params_to_df(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
727
|
def predict_log_proba(
|
741
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
742
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -773,16 +760,6 @@ class LinearSVC(BaseTransformer):
|
|
773
760
|
return output_df
|
774
761
|
|
775
762
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
776
|
-
@telemetry.send_api_usage_telemetry(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
|
-
@telemetry.add_stmt_params_to_df(
|
782
|
-
project=_PROJECT,
|
783
|
-
subproject=_SUBPROJECT,
|
784
|
-
custom_tags=dict([("autogen", True)]),
|
785
|
-
)
|
786
763
|
def decision_function(
|
787
764
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
788
765
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -885,11 +862,6 @@ class LinearSVC(BaseTransformer):
|
|
885
862
|
subproject=_SUBPROJECT,
|
886
863
|
custom_tags=dict([("autogen", True)]),
|
887
864
|
)
|
888
|
-
@telemetry.add_stmt_params_to_df(
|
889
|
-
project=_PROJECT,
|
890
|
-
subproject=_SUBPROJECT,
|
891
|
-
custom_tags=dict([("autogen", True)]),
|
892
|
-
)
|
893
865
|
def kneighbors(
|
894
866
|
self,
|
895
867
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -949,9 +921,9 @@ class LinearSVC(BaseTransformer):
|
|
949
921
|
# For classifier, the type of predict is the same as the type of label
|
950
922
|
if self._sklearn_object._estimator_type == 'classifier':
|
951
923
|
# label columns is the desired type for output
|
952
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
924
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
953
925
|
# rename the output columns
|
954
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
926
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
955
927
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
956
928
|
([] if self._drop_input_cols else inputs)
|
957
929
|
+ outputs)
|