snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LinearSVR(BaseTransformer):
57
58
  r"""Linear Support Vector Regression
58
59
  For more details on this class, see [sklearn.svm.LinearSVR]
@@ -60,6 +61,51 @@ class LinearSVR(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  epsilon: float, default=0.0
64
110
  Epsilon parameter in the epsilon-insensitive loss function. Note
65
111
  that the value of this parameter depends on the scale of the target
@@ -113,42 +159,6 @@ class LinearSVR(BaseTransformer):
113
159
 
114
160
  max_iter: int, default=1000
115
161
  The maximum number of iterations to be run.
116
-
117
- input_cols: Optional[Union[str, List[str]]]
118
- A string or list of strings representing column names that contain features.
119
- If this parameter is not specified, all columns in the input DataFrame except
120
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
121
- parameters are considered input columns.
122
-
123
- label_cols: Optional[Union[str, List[str]]]
124
- A string or list of strings representing column names that contain labels.
125
- This is a required param for estimators, as there is no way to infer these
126
- columns. If this parameter is not specified, then object is fitted without
127
- labels (like a transformer).
128
-
129
- output_cols: Optional[Union[str, List[str]]]
130
- A string or list of strings representing column names that will store the
131
- output of predict and transform operations. The length of output_cols must
132
- match the expected number of output columns from the specific estimator or
133
- transformer class used.
134
- If this parameter is not specified, output column names are derived by
135
- adding an OUTPUT_ prefix to the label column names. These inferred output
136
- column names work for estimator's predict() method, but output_cols must
137
- be set explicitly for transformers.
138
-
139
- sample_weight_col: Optional[str]
140
- A string representing the column name containing the sample weights.
141
- This argument is only required when working with weighted datasets.
142
-
143
- passthrough_cols: Optional[Union[str, List[str]]]
144
- A string or a list of strings indicating column names to be excluded from any
145
- operations (such as train, transform, or inference). These specified column(s)
146
- will remain untouched throughout the process. This option is helpful in scenarios
147
- requiring automatic input_cols inference, but need to avoid using specific
148
- columns, like index columns, during training or inference.
149
-
150
- drop_input_cols: Optional[bool], default=False
151
- If set, the response of predict(), transform() methods will not contain input columns.
152
162
  """
153
163
 
154
164
  def __init__( # type: ignore[no-untyped-def]
@@ -179,7 +189,7 @@ class LinearSVR(BaseTransformer):
179
189
  self.set_passthrough_cols(passthrough_cols)
180
190
  self.set_drop_input_cols(drop_input_cols)
181
191
  self.set_sample_weight_col(sample_weight_col)
182
- deps = set(SklearnWrapperProvider().dependencies)
192
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
183
193
 
184
194
  self._deps = list(deps)
185
195
 
@@ -197,13 +207,14 @@ class LinearSVR(BaseTransformer):
197
207
  args=init_args,
198
208
  klass=sklearn.svm.LinearSVR
199
209
  )
200
- self._sklearn_object = sklearn.svm.LinearSVR(
210
+ self._sklearn_object: Any = sklearn.svm.LinearSVR(
201
211
  **cleaned_up_init_args,
202
212
  )
203
213
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
204
214
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
205
215
  self._snowpark_cols: Optional[List[str]] = self.input_cols
206
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
216
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
217
+ self._autogenerated = True
207
218
 
208
219
  def _get_rand_id(self) -> str:
209
220
  """
@@ -259,54 +270,48 @@ class LinearSVR(BaseTransformer):
259
270
  self
260
271
  """
261
272
  self._infer_input_output_cols(dataset)
262
- if isinstance(dataset, pd.DataFrame):
263
- assert self._sklearn_object is not None # keep mypy happy
264
- self._sklearn_object = self._handlers.fit_pandas(
265
- dataset,
266
- self._sklearn_object,
267
- self.input_cols,
268
- self.label_cols,
269
- self.sample_weight_col
270
- )
271
- elif isinstance(dataset, DataFrame):
272
- self._fit_snowpark(dataset)
273
- else:
274
- raise TypeError(
275
- f"Unexpected dataset type: {type(dataset)}."
276
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
277
- )
273
+ if isinstance(dataset, DataFrame):
274
+ session = dataset._session
275
+ assert session is not None # keep mypy happy
276
+ # Validate that key package version in user workspace are supported in snowflake conda channel
277
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
278
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
279
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
280
+
281
+ # Specify input columns so column pruning will be enforced
282
+ selected_cols = self._get_active_columns()
283
+ if len(selected_cols) > 0:
284
+ dataset = dataset.select(selected_cols)
285
+
286
+ self._snowpark_cols = dataset.select(self.input_cols).columns
287
+
288
+ # If we are already in a stored procedure, no need to kick off another one.
289
+ if SNOWML_SPROC_ENV in os.environ:
290
+ statement_params = telemetry.get_function_usage_statement_params(
291
+ project=_PROJECT,
292
+ subproject=_SUBPROJECT,
293
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
294
+ api_calls=[Session.call],
295
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
296
+ )
297
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
298
+ pd_df.columns = dataset.columns
299
+ dataset = pd_df
300
+
301
+ model_trainer = ModelTrainerBuilder.build(
302
+ estimator=self._sklearn_object,
303
+ dataset=dataset,
304
+ input_cols=self.input_cols,
305
+ label_cols=self.label_cols,
306
+ sample_weight_col=self.sample_weight_col,
307
+ autogenerated=self._autogenerated,
308
+ subproject=_SUBPROJECT
309
+ )
310
+ self._sklearn_object = model_trainer.train()
278
311
  self._is_fitted = True
279
312
  self._get_model_signatures(dataset)
280
313
  return self
281
314
 
282
- def _fit_snowpark(self, dataset: DataFrame) -> None:
283
- session = dataset._session
284
- assert session is not None # keep mypy happy
285
- # Validate that key package version in user workspace are supported in snowflake conda channel
286
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
287
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
288
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
289
-
290
- # Specify input columns so column pruning will be enforced
291
- selected_cols = self._get_active_columns()
292
- if len(selected_cols) > 0:
293
- dataset = dataset.select(selected_cols)
294
-
295
- estimator = self._sklearn_object
296
- assert estimator is not None # Keep mypy happy
297
-
298
- self._snowpark_cols = dataset.select(self.input_cols).columns
299
-
300
- self._sklearn_object = self._handlers.fit_snowpark(
301
- dataset,
302
- session,
303
- estimator,
304
- ["snowflake-snowpark-python"] + self._get_dependencies(),
305
- self.input_cols,
306
- self.label_cols,
307
- self.sample_weight_col,
308
- )
309
-
310
315
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
311
316
  if self._drop_input_cols:
312
317
  return []
@@ -494,11 +499,6 @@ class LinearSVR(BaseTransformer):
494
499
  subproject=_SUBPROJECT,
495
500
  custom_tags=dict([("autogen", True)]),
496
501
  )
497
- @telemetry.add_stmt_params_to_df(
498
- project=_PROJECT,
499
- subproject=_SUBPROJECT,
500
- custom_tags=dict([("autogen", True)]),
501
- )
502
502
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
503
503
  """Predict using the linear model
504
504
  For more details on this function, see [sklearn.svm.LinearSVR.predict]
@@ -552,11 +552,6 @@ class LinearSVR(BaseTransformer):
552
552
  subproject=_SUBPROJECT,
553
553
  custom_tags=dict([("autogen", True)]),
554
554
  )
555
- @telemetry.add_stmt_params_to_df(
556
- project=_PROJECT,
557
- subproject=_SUBPROJECT,
558
- custom_tags=dict([("autogen", True)]),
559
- )
560
555
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
561
556
  """Method not supported for this class.
562
557
 
@@ -613,7 +608,8 @@ class LinearSVR(BaseTransformer):
613
608
  if False:
614
609
  self.fit(dataset)
615
610
  assert self._sklearn_object is not None
616
- return self._sklearn_object.labels_
611
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
612
+ return labels
617
613
  else:
618
614
  raise NotImplementedError
619
615
 
@@ -649,6 +645,7 @@ class LinearSVR(BaseTransformer):
649
645
  output_cols = []
650
646
 
651
647
  # Make sure column names are valid snowflake identifiers.
648
+ assert output_cols is not None # Make MyPy happy
652
649
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
653
650
 
654
651
  return rv
@@ -659,11 +656,6 @@ class LinearSVR(BaseTransformer):
659
656
  subproject=_SUBPROJECT,
660
657
  custom_tags=dict([("autogen", True)]),
661
658
  )
662
- @telemetry.add_stmt_params_to_df(
663
- project=_PROJECT,
664
- subproject=_SUBPROJECT,
665
- custom_tags=dict([("autogen", True)]),
666
- )
667
659
  def predict_proba(
668
660
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
669
661
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -704,11 +696,6 @@ class LinearSVR(BaseTransformer):
704
696
  subproject=_SUBPROJECT,
705
697
  custom_tags=dict([("autogen", True)]),
706
698
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
699
  def predict_log_proba(
713
700
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
714
701
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -745,16 +732,6 @@ class LinearSVR(BaseTransformer):
745
732
  return output_df
746
733
 
747
734
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
748
- @telemetry.send_api_usage_telemetry(
749
- project=_PROJECT,
750
- subproject=_SUBPROJECT,
751
- custom_tags=dict([("autogen", True)]),
752
- )
753
- @telemetry.add_stmt_params_to_df(
754
- project=_PROJECT,
755
- subproject=_SUBPROJECT,
756
- custom_tags=dict([("autogen", True)]),
757
- )
758
735
  def decision_function(
759
736
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
760
737
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -855,11 +832,6 @@ class LinearSVR(BaseTransformer):
855
832
  subproject=_SUBPROJECT,
856
833
  custom_tags=dict([("autogen", True)]),
857
834
  )
858
- @telemetry.add_stmt_params_to_df(
859
- project=_PROJECT,
860
- subproject=_SUBPROJECT,
861
- custom_tags=dict([("autogen", True)]),
862
- )
863
835
  def kneighbors(
864
836
  self,
865
837
  dataset: Union[DataFrame, pd.DataFrame],
@@ -919,9 +891,9 @@ class LinearSVR(BaseTransformer):
919
891
  # For classifier, the type of predict is the same as the type of label
920
892
  if self._sklearn_object._estimator_type == 'classifier':
921
893
  # label columns is the desired type for output
922
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
894
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
923
895
  # rename the output columns
924
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
896
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
925
897
  self._model_signature_dict["predict"] = ModelSignature(inputs,
926
898
  ([] if self._drop_input_cols else inputs)
927
899
  + outputs)