snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearSVR(BaseTransformer):
|
57
58
|
r"""Linear Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.LinearSVR]
|
@@ -60,6 +61,51 @@ class LinearSVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
epsilon: float, default=0.0
|
64
110
|
Epsilon parameter in the epsilon-insensitive loss function. Note
|
65
111
|
that the value of this parameter depends on the scale of the target
|
@@ -113,42 +159,6 @@ class LinearSVR(BaseTransformer):
|
|
113
159
|
|
114
160
|
max_iter: int, default=1000
|
115
161
|
The maximum number of iterations to be run.
|
116
|
-
|
117
|
-
input_cols: Optional[Union[str, List[str]]]
|
118
|
-
A string or list of strings representing column names that contain features.
|
119
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
120
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
121
|
-
parameters are considered input columns.
|
122
|
-
|
123
|
-
label_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that contain labels.
|
125
|
-
This is a required param for estimators, as there is no way to infer these
|
126
|
-
columns. If this parameter is not specified, then object is fitted without
|
127
|
-
labels (like a transformer).
|
128
|
-
|
129
|
-
output_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that will store the
|
131
|
-
output of predict and transform operations. The length of output_cols must
|
132
|
-
match the expected number of output columns from the specific estimator or
|
133
|
-
transformer class used.
|
134
|
-
If this parameter is not specified, output column names are derived by
|
135
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
136
|
-
column names work for estimator's predict() method, but output_cols must
|
137
|
-
be set explicitly for transformers.
|
138
|
-
|
139
|
-
sample_weight_col: Optional[str]
|
140
|
-
A string representing the column name containing the sample weights.
|
141
|
-
This argument is only required when working with weighted datasets.
|
142
|
-
|
143
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
144
|
-
A string or a list of strings indicating column names to be excluded from any
|
145
|
-
operations (such as train, transform, or inference). These specified column(s)
|
146
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
147
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
148
|
-
columns, like index columns, during training or inference.
|
149
|
-
|
150
|
-
drop_input_cols: Optional[bool], default=False
|
151
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
152
162
|
"""
|
153
163
|
|
154
164
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -179,7 +189,7 @@ class LinearSVR(BaseTransformer):
|
|
179
189
|
self.set_passthrough_cols(passthrough_cols)
|
180
190
|
self.set_drop_input_cols(drop_input_cols)
|
181
191
|
self.set_sample_weight_col(sample_weight_col)
|
182
|
-
deps = set(
|
192
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
183
193
|
|
184
194
|
self._deps = list(deps)
|
185
195
|
|
@@ -197,13 +207,14 @@ class LinearSVR(BaseTransformer):
|
|
197
207
|
args=init_args,
|
198
208
|
klass=sklearn.svm.LinearSVR
|
199
209
|
)
|
200
|
-
self._sklearn_object = sklearn.svm.LinearSVR(
|
210
|
+
self._sklearn_object: Any = sklearn.svm.LinearSVR(
|
201
211
|
**cleaned_up_init_args,
|
202
212
|
)
|
203
213
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
204
214
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
205
215
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
206
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
216
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
217
|
+
self._autogenerated = True
|
207
218
|
|
208
219
|
def _get_rand_id(self) -> str:
|
209
220
|
"""
|
@@ -259,54 +270,48 @@ class LinearSVR(BaseTransformer):
|
|
259
270
|
self
|
260
271
|
"""
|
261
272
|
self._infer_input_output_cols(dataset)
|
262
|
-
if isinstance(dataset,
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
self.
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
273
|
+
if isinstance(dataset, DataFrame):
|
274
|
+
session = dataset._session
|
275
|
+
assert session is not None # keep mypy happy
|
276
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
277
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
278
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
279
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
280
|
+
|
281
|
+
# Specify input columns so column pruning will be enforced
|
282
|
+
selected_cols = self._get_active_columns()
|
283
|
+
if len(selected_cols) > 0:
|
284
|
+
dataset = dataset.select(selected_cols)
|
285
|
+
|
286
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
+
|
288
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
289
|
+
if SNOWML_SPROC_ENV in os.environ:
|
290
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
291
|
+
project=_PROJECT,
|
292
|
+
subproject=_SUBPROJECT,
|
293
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
|
294
|
+
api_calls=[Session.call],
|
295
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
296
|
+
)
|
297
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
|
+
pd_df.columns = dataset.columns
|
299
|
+
dataset = pd_df
|
300
|
+
|
301
|
+
model_trainer = ModelTrainerBuilder.build(
|
302
|
+
estimator=self._sklearn_object,
|
303
|
+
dataset=dataset,
|
304
|
+
input_cols=self.input_cols,
|
305
|
+
label_cols=self.label_cols,
|
306
|
+
sample_weight_col=self.sample_weight_col,
|
307
|
+
autogenerated=self._autogenerated,
|
308
|
+
subproject=_SUBPROJECT
|
309
|
+
)
|
310
|
+
self._sklearn_object = model_trainer.train()
|
278
311
|
self._is_fitted = True
|
279
312
|
self._get_model_signatures(dataset)
|
280
313
|
return self
|
281
314
|
|
282
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
283
|
-
session = dataset._session
|
284
|
-
assert session is not None # keep mypy happy
|
285
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
286
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
287
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
288
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
289
|
-
|
290
|
-
# Specify input columns so column pruning will be enforced
|
291
|
-
selected_cols = self._get_active_columns()
|
292
|
-
if len(selected_cols) > 0:
|
293
|
-
dataset = dataset.select(selected_cols)
|
294
|
-
|
295
|
-
estimator = self._sklearn_object
|
296
|
-
assert estimator is not None # Keep mypy happy
|
297
|
-
|
298
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
299
|
-
|
300
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
301
|
-
dataset,
|
302
|
-
session,
|
303
|
-
estimator,
|
304
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
305
|
-
self.input_cols,
|
306
|
-
self.label_cols,
|
307
|
-
self.sample_weight_col,
|
308
|
-
)
|
309
|
-
|
310
315
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
311
316
|
if self._drop_input_cols:
|
312
317
|
return []
|
@@ -494,11 +499,6 @@ class LinearSVR(BaseTransformer):
|
|
494
499
|
subproject=_SUBPROJECT,
|
495
500
|
custom_tags=dict([("autogen", True)]),
|
496
501
|
)
|
497
|
-
@telemetry.add_stmt_params_to_df(
|
498
|
-
project=_PROJECT,
|
499
|
-
subproject=_SUBPROJECT,
|
500
|
-
custom_tags=dict([("autogen", True)]),
|
501
|
-
)
|
502
502
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
503
503
|
"""Predict using the linear model
|
504
504
|
For more details on this function, see [sklearn.svm.LinearSVR.predict]
|
@@ -552,11 +552,6 @@ class LinearSVR(BaseTransformer):
|
|
552
552
|
subproject=_SUBPROJECT,
|
553
553
|
custom_tags=dict([("autogen", True)]),
|
554
554
|
)
|
555
|
-
@telemetry.add_stmt_params_to_df(
|
556
|
-
project=_PROJECT,
|
557
|
-
subproject=_SUBPROJECT,
|
558
|
-
custom_tags=dict([("autogen", True)]),
|
559
|
-
)
|
560
555
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
561
556
|
"""Method not supported for this class.
|
562
557
|
|
@@ -613,7 +608,8 @@ class LinearSVR(BaseTransformer):
|
|
613
608
|
if False:
|
614
609
|
self.fit(dataset)
|
615
610
|
assert self._sklearn_object is not None
|
616
|
-
|
611
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
612
|
+
return labels
|
617
613
|
else:
|
618
614
|
raise NotImplementedError
|
619
615
|
|
@@ -649,6 +645,7 @@ class LinearSVR(BaseTransformer):
|
|
649
645
|
output_cols = []
|
650
646
|
|
651
647
|
# Make sure column names are valid snowflake identifiers.
|
648
|
+
assert output_cols is not None # Make MyPy happy
|
652
649
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
653
650
|
|
654
651
|
return rv
|
@@ -659,11 +656,6 @@ class LinearSVR(BaseTransformer):
|
|
659
656
|
subproject=_SUBPROJECT,
|
660
657
|
custom_tags=dict([("autogen", True)]),
|
661
658
|
)
|
662
|
-
@telemetry.add_stmt_params_to_df(
|
663
|
-
project=_PROJECT,
|
664
|
-
subproject=_SUBPROJECT,
|
665
|
-
custom_tags=dict([("autogen", True)]),
|
666
|
-
)
|
667
659
|
def predict_proba(
|
668
660
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
669
661
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -704,11 +696,6 @@ class LinearSVR(BaseTransformer):
|
|
704
696
|
subproject=_SUBPROJECT,
|
705
697
|
custom_tags=dict([("autogen", True)]),
|
706
698
|
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
699
|
def predict_log_proba(
|
713
700
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
714
701
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -745,16 +732,6 @@ class LinearSVR(BaseTransformer):
|
|
745
732
|
return output_df
|
746
733
|
|
747
734
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
748
|
-
@telemetry.send_api_usage_telemetry(
|
749
|
-
project=_PROJECT,
|
750
|
-
subproject=_SUBPROJECT,
|
751
|
-
custom_tags=dict([("autogen", True)]),
|
752
|
-
)
|
753
|
-
@telemetry.add_stmt_params_to_df(
|
754
|
-
project=_PROJECT,
|
755
|
-
subproject=_SUBPROJECT,
|
756
|
-
custom_tags=dict([("autogen", True)]),
|
757
|
-
)
|
758
735
|
def decision_function(
|
759
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
760
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -855,11 +832,6 @@ class LinearSVR(BaseTransformer):
|
|
855
832
|
subproject=_SUBPROJECT,
|
856
833
|
custom_tags=dict([("autogen", True)]),
|
857
834
|
)
|
858
|
-
@telemetry.add_stmt_params_to_df(
|
859
|
-
project=_PROJECT,
|
860
|
-
subproject=_SUBPROJECT,
|
861
|
-
custom_tags=dict([("autogen", True)]),
|
862
|
-
)
|
863
835
|
def kneighbors(
|
864
836
|
self,
|
865
837
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -919,9 +891,9 @@ class LinearSVR(BaseTransformer):
|
|
919
891
|
# For classifier, the type of predict is the same as the type of label
|
920
892
|
if self._sklearn_object._estimator_type == 'classifier':
|
921
893
|
# label columns is the desired type for output
|
922
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
894
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
923
895
|
# rename the output columns
|
924
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
896
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
925
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
926
898
|
([] if self._drop_input_cols else inputs)
|
927
899
|
+ outputs)
|