snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MinCovDet(BaseTransformer):
|
57
58
|
r"""Minimum Covariance Determinant (MCD): robust estimator of covariance
|
58
59
|
For more details on this class, see [sklearn.covariance.MinCovDet]
|
@@ -60,6 +61,49 @@ class MinCovDet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
store_precision: bool, default=True
|
64
108
|
Specify if the estimated precision is stored.
|
65
109
|
|
@@ -83,42 +127,6 @@ class MinCovDet(BaseTransformer):
|
|
83
127
|
Determines the pseudo random number generator for shuffling the data.
|
84
128
|
Pass an int for reproducible results across multiple function calls.
|
85
129
|
See :term:`Glossary <random_state>`.
|
86
|
-
|
87
|
-
input_cols: Optional[Union[str, List[str]]]
|
88
|
-
A string or list of strings representing column names that contain features.
|
89
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
90
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
91
|
-
parameters are considered input columns.
|
92
|
-
|
93
|
-
label_cols: Optional[Union[str, List[str]]]
|
94
|
-
A string or list of strings representing column names that contain labels.
|
95
|
-
This is a required param for estimators, as there is no way to infer these
|
96
|
-
columns. If this parameter is not specified, then object is fitted without
|
97
|
-
labels (like a transformer).
|
98
|
-
|
99
|
-
output_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that will store the
|
101
|
-
output of predict and transform operations. The length of output_cols must
|
102
|
-
match the expected number of output columns from the specific estimator or
|
103
|
-
transformer class used.
|
104
|
-
If this parameter is not specified, output column names are derived by
|
105
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
106
|
-
column names work for estimator's predict() method, but output_cols must
|
107
|
-
be set explicitly for transformers.
|
108
|
-
|
109
|
-
sample_weight_col: Optional[str]
|
110
|
-
A string representing the column name containing the sample weights.
|
111
|
-
This argument is only required when working with weighted datasets.
|
112
|
-
|
113
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or a list of strings indicating column names to be excluded from any
|
115
|
-
operations (such as train, transform, or inference). These specified column(s)
|
116
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
117
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
118
|
-
columns, like index columns, during training or inference.
|
119
|
-
|
120
|
-
drop_input_cols: Optional[bool], default=False
|
121
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
122
130
|
"""
|
123
131
|
|
124
132
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -143,7 +151,7 @@ class MinCovDet(BaseTransformer):
|
|
143
151
|
self.set_passthrough_cols(passthrough_cols)
|
144
152
|
self.set_drop_input_cols(drop_input_cols)
|
145
153
|
self.set_sample_weight_col(sample_weight_col)
|
146
|
-
deps = set(
|
154
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
147
155
|
|
148
156
|
self._deps = list(deps)
|
149
157
|
|
@@ -155,13 +163,14 @@ class MinCovDet(BaseTransformer):
|
|
155
163
|
args=init_args,
|
156
164
|
klass=sklearn.covariance.MinCovDet
|
157
165
|
)
|
158
|
-
self._sklearn_object = sklearn.covariance.MinCovDet(
|
166
|
+
self._sklearn_object: Any = sklearn.covariance.MinCovDet(
|
159
167
|
**cleaned_up_init_args,
|
160
168
|
)
|
161
169
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
162
170
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
163
171
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
164
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
172
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
173
|
+
self._autogenerated = True
|
165
174
|
|
166
175
|
def _get_rand_id(self) -> str:
|
167
176
|
"""
|
@@ -217,54 +226,48 @@ class MinCovDet(BaseTransformer):
|
|
217
226
|
self
|
218
227
|
"""
|
219
228
|
self._infer_input_output_cols(dataset)
|
220
|
-
if isinstance(dataset,
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
self.
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
229
|
+
if isinstance(dataset, DataFrame):
|
230
|
+
session = dataset._session
|
231
|
+
assert session is not None # keep mypy happy
|
232
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
233
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
234
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
235
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
236
|
+
|
237
|
+
# Specify input columns so column pruning will be enforced
|
238
|
+
selected_cols = self._get_active_columns()
|
239
|
+
if len(selected_cols) > 0:
|
240
|
+
dataset = dataset.select(selected_cols)
|
241
|
+
|
242
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
|
+
|
244
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
245
|
+
if SNOWML_SPROC_ENV in os.environ:
|
246
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
247
|
+
project=_PROJECT,
|
248
|
+
subproject=_SUBPROJECT,
|
249
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MinCovDet.__class__.__name__),
|
250
|
+
api_calls=[Session.call],
|
251
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
252
|
+
)
|
253
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
|
+
pd_df.columns = dataset.columns
|
255
|
+
dataset = pd_df
|
256
|
+
|
257
|
+
model_trainer = ModelTrainerBuilder.build(
|
258
|
+
estimator=self._sklearn_object,
|
259
|
+
dataset=dataset,
|
260
|
+
input_cols=self.input_cols,
|
261
|
+
label_cols=self.label_cols,
|
262
|
+
sample_weight_col=self.sample_weight_col,
|
263
|
+
autogenerated=self._autogenerated,
|
264
|
+
subproject=_SUBPROJECT
|
265
|
+
)
|
266
|
+
self._sklearn_object = model_trainer.train()
|
236
267
|
self._is_fitted = True
|
237
268
|
self._get_model_signatures(dataset)
|
238
269
|
return self
|
239
270
|
|
240
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
241
|
-
session = dataset._session
|
242
|
-
assert session is not None # keep mypy happy
|
243
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
-
|
248
|
-
# Specify input columns so column pruning will be enforced
|
249
|
-
selected_cols = self._get_active_columns()
|
250
|
-
if len(selected_cols) > 0:
|
251
|
-
dataset = dataset.select(selected_cols)
|
252
|
-
|
253
|
-
estimator = self._sklearn_object
|
254
|
-
assert estimator is not None # Keep mypy happy
|
255
|
-
|
256
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
257
|
-
|
258
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
259
|
-
dataset,
|
260
|
-
session,
|
261
|
-
estimator,
|
262
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
263
|
-
self.input_cols,
|
264
|
-
self.label_cols,
|
265
|
-
self.sample_weight_col,
|
266
|
-
)
|
267
|
-
|
268
271
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
269
272
|
if self._drop_input_cols:
|
270
273
|
return []
|
@@ -452,11 +455,6 @@ class MinCovDet(BaseTransformer):
|
|
452
455
|
subproject=_SUBPROJECT,
|
453
456
|
custom_tags=dict([("autogen", True)]),
|
454
457
|
)
|
455
|
-
@telemetry.add_stmt_params_to_df(
|
456
|
-
project=_PROJECT,
|
457
|
-
subproject=_SUBPROJECT,
|
458
|
-
custom_tags=dict([("autogen", True)]),
|
459
|
-
)
|
460
458
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
461
459
|
"""Method not supported for this class.
|
462
460
|
|
@@ -508,11 +506,6 @@ class MinCovDet(BaseTransformer):
|
|
508
506
|
subproject=_SUBPROJECT,
|
509
507
|
custom_tags=dict([("autogen", True)]),
|
510
508
|
)
|
511
|
-
@telemetry.add_stmt_params_to_df(
|
512
|
-
project=_PROJECT,
|
513
|
-
subproject=_SUBPROJECT,
|
514
|
-
custom_tags=dict([("autogen", True)]),
|
515
|
-
)
|
516
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
517
510
|
"""Method not supported for this class.
|
518
511
|
|
@@ -569,7 +562,8 @@ class MinCovDet(BaseTransformer):
|
|
569
562
|
if False:
|
570
563
|
self.fit(dataset)
|
571
564
|
assert self._sklearn_object is not None
|
572
|
-
|
565
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
566
|
+
return labels
|
573
567
|
else:
|
574
568
|
raise NotImplementedError
|
575
569
|
|
@@ -605,6 +599,7 @@ class MinCovDet(BaseTransformer):
|
|
605
599
|
output_cols = []
|
606
600
|
|
607
601
|
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
608
603
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
609
604
|
|
610
605
|
return rv
|
@@ -615,11 +610,6 @@ class MinCovDet(BaseTransformer):
|
|
615
610
|
subproject=_SUBPROJECT,
|
616
611
|
custom_tags=dict([("autogen", True)]),
|
617
612
|
)
|
618
|
-
@telemetry.add_stmt_params_to_df(
|
619
|
-
project=_PROJECT,
|
620
|
-
subproject=_SUBPROJECT,
|
621
|
-
custom_tags=dict([("autogen", True)]),
|
622
|
-
)
|
623
613
|
def predict_proba(
|
624
614
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
625
615
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -660,11 +650,6 @@ class MinCovDet(BaseTransformer):
|
|
660
650
|
subproject=_SUBPROJECT,
|
661
651
|
custom_tags=dict([("autogen", True)]),
|
662
652
|
)
|
663
|
-
@telemetry.add_stmt_params_to_df(
|
664
|
-
project=_PROJECT,
|
665
|
-
subproject=_SUBPROJECT,
|
666
|
-
custom_tags=dict([("autogen", True)]),
|
667
|
-
)
|
668
653
|
def predict_log_proba(
|
669
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
670
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -701,16 +686,6 @@ class MinCovDet(BaseTransformer):
|
|
701
686
|
return output_df
|
702
687
|
|
703
688
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
704
|
-
@telemetry.send_api_usage_telemetry(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
|
-
@telemetry.add_stmt_params_to_df(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
689
|
def decision_function(
|
715
690
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
716
691
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,11 +786,6 @@ class MinCovDet(BaseTransformer):
|
|
811
786
|
subproject=_SUBPROJECT,
|
812
787
|
custom_tags=dict([("autogen", True)]),
|
813
788
|
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
789
|
def kneighbors(
|
820
790
|
self,
|
821
791
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -875,9 +845,9 @@ class MinCovDet(BaseTransformer):
|
|
875
845
|
# For classifier, the type of predict is the same as the type of label
|
876
846
|
if self._sklearn_object._estimator_type == 'classifier':
|
877
847
|
# label columns is the desired type for output
|
878
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
848
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
879
849
|
# rename the output columns
|
880
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
850
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
881
851
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
852
|
([] if self._drop_input_cols else inputs)
|
883
853
|
+ outputs)
|
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OAS(BaseTransformer):
|
57
58
|
r"""Oracle Approximating Shrinkage Estimator as proposed in [1]_
|
58
59
|
For more details on this class, see [sklearn.covariance.OAS]
|
@@ -60,50 +61,57 @@ class OAS(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
store_precision: bool, default=True
|
64
|
-
Specify if the estimated precision is stored.
|
65
|
-
|
66
|
-
assume_centered: bool, default=False
|
67
|
-
If True, data will not be centered before computation.
|
68
|
-
Useful when working with data whose mean is almost, but not exactly
|
69
|
-
zero.
|
70
|
-
If False (default), data will be centered before computation.
|
71
64
|
|
72
65
|
input_cols: Optional[Union[str, List[str]]]
|
73
66
|
A string or list of strings representing column names that contain features.
|
74
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
75
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
76
|
-
parameters are considered input columns.
|
77
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
78
72
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
81
|
-
columns. If this parameter is not specified, then object is fitted without
|
82
|
-
labels (like a transformer).
|
83
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
84
75
|
output_cols: Optional[Union[str, List[str]]]
|
85
76
|
A string or list of strings representing column names that will store the
|
86
77
|
output of predict and transform operations. The length of output_cols must
|
87
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
88
79
|
transformer class used.
|
89
|
-
If this parameter
|
90
|
-
|
91
|
-
|
92
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
93
89
|
|
94
90
|
sample_weight_col: Optional[str]
|
95
91
|
A string representing the column name containing the sample weights.
|
96
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
97
95
|
|
98
96
|
passthrough_cols: Optional[Union[str, List[str]]]
|
99
97
|
A string or a list of strings indicating column names to be excluded from any
|
100
98
|
operations (such as train, transform, or inference). These specified column(s)
|
101
99
|
will remain untouched throughout the process. This option is helpful in scenarios
|
102
100
|
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
-
columns, like index columns, during training or inference.
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
103
|
|
105
104
|
drop_input_cols: Optional[bool], default=False
|
106
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
store_precision: bool, default=True
|
108
|
+
Specify if the estimated precision is stored.
|
109
|
+
|
110
|
+
assume_centered: bool, default=False
|
111
|
+
If True, data will not be centered before computation.
|
112
|
+
Useful when working with data whose mean is almost, but not exactly
|
113
|
+
zero.
|
114
|
+
If False (default), data will be centered before computation.
|
107
115
|
"""
|
108
116
|
|
109
117
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -126,7 +134,7 @@ class OAS(BaseTransformer):
|
|
126
134
|
self.set_passthrough_cols(passthrough_cols)
|
127
135
|
self.set_drop_input_cols(drop_input_cols)
|
128
136
|
self.set_sample_weight_col(sample_weight_col)
|
129
|
-
deps = set(
|
137
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
130
138
|
|
131
139
|
self._deps = list(deps)
|
132
140
|
|
@@ -136,13 +144,14 @@ class OAS(BaseTransformer):
|
|
136
144
|
args=init_args,
|
137
145
|
klass=sklearn.covariance.OAS
|
138
146
|
)
|
139
|
-
self._sklearn_object = sklearn.covariance.OAS(
|
147
|
+
self._sklearn_object: Any = sklearn.covariance.OAS(
|
140
148
|
**cleaned_up_init_args,
|
141
149
|
)
|
142
150
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
143
151
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
144
152
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
145
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OAS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
153
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OAS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
154
|
+
self._autogenerated = True
|
146
155
|
|
147
156
|
def _get_rand_id(self) -> str:
|
148
157
|
"""
|
@@ -198,54 +207,48 @@ class OAS(BaseTransformer):
|
|
198
207
|
self
|
199
208
|
"""
|
200
209
|
self._infer_input_output_cols(dataset)
|
201
|
-
if isinstance(dataset,
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
self.
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
210
|
+
if isinstance(dataset, DataFrame):
|
211
|
+
session = dataset._session
|
212
|
+
assert session is not None # keep mypy happy
|
213
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
214
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
215
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
216
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
217
|
+
|
218
|
+
# Specify input columns so column pruning will be enforced
|
219
|
+
selected_cols = self._get_active_columns()
|
220
|
+
if len(selected_cols) > 0:
|
221
|
+
dataset = dataset.select(selected_cols)
|
222
|
+
|
223
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
224
|
+
|
225
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
226
|
+
if SNOWML_SPROC_ENV in os.environ:
|
227
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
228
|
+
project=_PROJECT,
|
229
|
+
subproject=_SUBPROJECT,
|
230
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OAS.__class__.__name__),
|
231
|
+
api_calls=[Session.call],
|
232
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
233
|
+
)
|
234
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
235
|
+
pd_df.columns = dataset.columns
|
236
|
+
dataset = pd_df
|
237
|
+
|
238
|
+
model_trainer = ModelTrainerBuilder.build(
|
239
|
+
estimator=self._sklearn_object,
|
240
|
+
dataset=dataset,
|
241
|
+
input_cols=self.input_cols,
|
242
|
+
label_cols=self.label_cols,
|
243
|
+
sample_weight_col=self.sample_weight_col,
|
244
|
+
autogenerated=self._autogenerated,
|
245
|
+
subproject=_SUBPROJECT
|
246
|
+
)
|
247
|
+
self._sklearn_object = model_trainer.train()
|
217
248
|
self._is_fitted = True
|
218
249
|
self._get_model_signatures(dataset)
|
219
250
|
return self
|
220
251
|
|
221
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
222
|
-
session = dataset._session
|
223
|
-
assert session is not None # keep mypy happy
|
224
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
225
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
226
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
227
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
228
|
-
|
229
|
-
# Specify input columns so column pruning will be enforced
|
230
|
-
selected_cols = self._get_active_columns()
|
231
|
-
if len(selected_cols) > 0:
|
232
|
-
dataset = dataset.select(selected_cols)
|
233
|
-
|
234
|
-
estimator = self._sklearn_object
|
235
|
-
assert estimator is not None # Keep mypy happy
|
236
|
-
|
237
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
238
|
-
|
239
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
240
|
-
dataset,
|
241
|
-
session,
|
242
|
-
estimator,
|
243
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
244
|
-
self.input_cols,
|
245
|
-
self.label_cols,
|
246
|
-
self.sample_weight_col,
|
247
|
-
)
|
248
|
-
|
249
252
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
250
253
|
if self._drop_input_cols:
|
251
254
|
return []
|
@@ -433,11 +436,6 @@ class OAS(BaseTransformer):
|
|
433
436
|
subproject=_SUBPROJECT,
|
434
437
|
custom_tags=dict([("autogen", True)]),
|
435
438
|
)
|
436
|
-
@telemetry.add_stmt_params_to_df(
|
437
|
-
project=_PROJECT,
|
438
|
-
subproject=_SUBPROJECT,
|
439
|
-
custom_tags=dict([("autogen", True)]),
|
440
|
-
)
|
441
439
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
442
440
|
"""Method not supported for this class.
|
443
441
|
|
@@ -489,11 +487,6 @@ class OAS(BaseTransformer):
|
|
489
487
|
subproject=_SUBPROJECT,
|
490
488
|
custom_tags=dict([("autogen", True)]),
|
491
489
|
)
|
492
|
-
@telemetry.add_stmt_params_to_df(
|
493
|
-
project=_PROJECT,
|
494
|
-
subproject=_SUBPROJECT,
|
495
|
-
custom_tags=dict([("autogen", True)]),
|
496
|
-
)
|
497
490
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
498
491
|
"""Method not supported for this class.
|
499
492
|
|
@@ -550,7 +543,8 @@ class OAS(BaseTransformer):
|
|
550
543
|
if False:
|
551
544
|
self.fit(dataset)
|
552
545
|
assert self._sklearn_object is not None
|
553
|
-
|
546
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
547
|
+
return labels
|
554
548
|
else:
|
555
549
|
raise NotImplementedError
|
556
550
|
|
@@ -586,6 +580,7 @@ class OAS(BaseTransformer):
|
|
586
580
|
output_cols = []
|
587
581
|
|
588
582
|
# Make sure column names are valid snowflake identifiers.
|
583
|
+
assert output_cols is not None # Make MyPy happy
|
589
584
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
590
585
|
|
591
586
|
return rv
|
@@ -596,11 +591,6 @@ class OAS(BaseTransformer):
|
|
596
591
|
subproject=_SUBPROJECT,
|
597
592
|
custom_tags=dict([("autogen", True)]),
|
598
593
|
)
|
599
|
-
@telemetry.add_stmt_params_to_df(
|
600
|
-
project=_PROJECT,
|
601
|
-
subproject=_SUBPROJECT,
|
602
|
-
custom_tags=dict([("autogen", True)]),
|
603
|
-
)
|
604
594
|
def predict_proba(
|
605
595
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
606
596
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -641,11 +631,6 @@ class OAS(BaseTransformer):
|
|
641
631
|
subproject=_SUBPROJECT,
|
642
632
|
custom_tags=dict([("autogen", True)]),
|
643
633
|
)
|
644
|
-
@telemetry.add_stmt_params_to_df(
|
645
|
-
project=_PROJECT,
|
646
|
-
subproject=_SUBPROJECT,
|
647
|
-
custom_tags=dict([("autogen", True)]),
|
648
|
-
)
|
649
634
|
def predict_log_proba(
|
650
635
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
651
636
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -682,16 +667,6 @@ class OAS(BaseTransformer):
|
|
682
667
|
return output_df
|
683
668
|
|
684
669
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
685
|
-
@telemetry.send_api_usage_telemetry(
|
686
|
-
project=_PROJECT,
|
687
|
-
subproject=_SUBPROJECT,
|
688
|
-
custom_tags=dict([("autogen", True)]),
|
689
|
-
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
670
|
def decision_function(
|
696
671
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
697
672
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -792,11 +767,6 @@ class OAS(BaseTransformer):
|
|
792
767
|
subproject=_SUBPROJECT,
|
793
768
|
custom_tags=dict([("autogen", True)]),
|
794
769
|
)
|
795
|
-
@telemetry.add_stmt_params_to_df(
|
796
|
-
project=_PROJECT,
|
797
|
-
subproject=_SUBPROJECT,
|
798
|
-
custom_tags=dict([("autogen", True)]),
|
799
|
-
)
|
800
770
|
def kneighbors(
|
801
771
|
self,
|
802
772
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -856,9 +826,9 @@ class OAS(BaseTransformer):
|
|
856
826
|
# For classifier, the type of predict is the same as the type of label
|
857
827
|
if self._sklearn_object._estimator_type == 'classifier':
|
858
828
|
# label columns is the desired type for output
|
859
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
829
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
860
830
|
# rename the output columns
|
861
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
831
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
862
832
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
863
833
|
([] if self._drop_input_cols else inputs)
|
864
834
|
+ outputs)
|