snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoLarsIC(BaseTransformer):
|
57
58
|
r"""Lasso model fit with Lars using BIC or AIC for model selection
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoLarsIC]
|
@@ -60,6 +61,51 @@ class LassoLarsIC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {'aic', 'bic'}, default='aic'
|
64
110
|
The type of criterion to use.
|
65
111
|
|
@@ -114,42 +160,6 @@ class LassoLarsIC(BaseTransformer):
|
|
114
160
|
The estimated noise variance of the data. If `None`, an unbiased
|
115
161
|
estimate is computed by an OLS model. However, it is only possible
|
116
162
|
in the case where `n_samples > n_features + fit_intercept`.
|
117
|
-
|
118
|
-
input_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that contain features.
|
120
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
121
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
122
|
-
parameters are considered input columns.
|
123
|
-
|
124
|
-
label_cols: Optional[Union[str, List[str]]]
|
125
|
-
A string or list of strings representing column names that contain labels.
|
126
|
-
This is a required param for estimators, as there is no way to infer these
|
127
|
-
columns. If this parameter is not specified, then object is fitted without
|
128
|
-
labels (like a transformer).
|
129
|
-
|
130
|
-
output_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that will store the
|
132
|
-
output of predict and transform operations. The length of output_cols must
|
133
|
-
match the expected number of output columns from the specific estimator or
|
134
|
-
transformer class used.
|
135
|
-
If this parameter is not specified, output column names are derived by
|
136
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
137
|
-
column names work for estimator's predict() method, but output_cols must
|
138
|
-
be set explicitly for transformers.
|
139
|
-
|
140
|
-
sample_weight_col: Optional[str]
|
141
|
-
A string representing the column name containing the sample weights.
|
142
|
-
This argument is only required when working with weighted datasets.
|
143
|
-
|
144
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or a list of strings indicating column names to be excluded from any
|
146
|
-
operations (such as train, transform, or inference). These specified column(s)
|
147
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
148
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
149
|
-
columns, like index columns, during training or inference.
|
150
|
-
|
151
|
-
drop_input_cols: Optional[bool], default=False
|
152
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
153
163
|
"""
|
154
164
|
|
155
165
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -180,7 +190,7 @@ class LassoLarsIC(BaseTransformer):
|
|
180
190
|
self.set_passthrough_cols(passthrough_cols)
|
181
191
|
self.set_drop_input_cols(drop_input_cols)
|
182
192
|
self.set_sample_weight_col(sample_weight_col)
|
183
|
-
deps = set(
|
193
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
184
194
|
|
185
195
|
self._deps = list(deps)
|
186
196
|
|
@@ -198,13 +208,14 @@ class LassoLarsIC(BaseTransformer):
|
|
198
208
|
args=init_args,
|
199
209
|
klass=sklearn.linear_model.LassoLarsIC
|
200
210
|
)
|
201
|
-
self._sklearn_object = sklearn.linear_model.LassoLarsIC(
|
211
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoLarsIC(
|
202
212
|
**cleaned_up_init_args,
|
203
213
|
)
|
204
214
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
205
215
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
206
216
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
207
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
217
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
218
|
+
self._autogenerated = True
|
208
219
|
|
209
220
|
def _get_rand_id(self) -> str:
|
210
221
|
"""
|
@@ -260,54 +271,48 @@ class LassoLarsIC(BaseTransformer):
|
|
260
271
|
self
|
261
272
|
"""
|
262
273
|
self._infer_input_output_cols(dataset)
|
263
|
-
if isinstance(dataset,
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
self.
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
274
|
+
if isinstance(dataset, DataFrame):
|
275
|
+
session = dataset._session
|
276
|
+
assert session is not None # keep mypy happy
|
277
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
278
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
279
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
280
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
281
|
+
|
282
|
+
# Specify input columns so column pruning will be enforced
|
283
|
+
selected_cols = self._get_active_columns()
|
284
|
+
if len(selected_cols) > 0:
|
285
|
+
dataset = dataset.select(selected_cols)
|
286
|
+
|
287
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
288
|
+
|
289
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
290
|
+
if SNOWML_SPROC_ENV in os.environ:
|
291
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
292
|
+
project=_PROJECT,
|
293
|
+
subproject=_SUBPROJECT,
|
294
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsIC.__class__.__name__),
|
295
|
+
api_calls=[Session.call],
|
296
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
297
|
+
)
|
298
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
299
|
+
pd_df.columns = dataset.columns
|
300
|
+
dataset = pd_df
|
301
|
+
|
302
|
+
model_trainer = ModelTrainerBuilder.build(
|
303
|
+
estimator=self._sklearn_object,
|
304
|
+
dataset=dataset,
|
305
|
+
input_cols=self.input_cols,
|
306
|
+
label_cols=self.label_cols,
|
307
|
+
sample_weight_col=self.sample_weight_col,
|
308
|
+
autogenerated=self._autogenerated,
|
309
|
+
subproject=_SUBPROJECT
|
310
|
+
)
|
311
|
+
self._sklearn_object = model_trainer.train()
|
279
312
|
self._is_fitted = True
|
280
313
|
self._get_model_signatures(dataset)
|
281
314
|
return self
|
282
315
|
|
283
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
284
|
-
session = dataset._session
|
285
|
-
assert session is not None # keep mypy happy
|
286
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
287
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
288
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
289
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
290
|
-
|
291
|
-
# Specify input columns so column pruning will be enforced
|
292
|
-
selected_cols = self._get_active_columns()
|
293
|
-
if len(selected_cols) > 0:
|
294
|
-
dataset = dataset.select(selected_cols)
|
295
|
-
|
296
|
-
estimator = self._sklearn_object
|
297
|
-
assert estimator is not None # Keep mypy happy
|
298
|
-
|
299
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
300
|
-
|
301
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
302
|
-
dataset,
|
303
|
-
session,
|
304
|
-
estimator,
|
305
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
306
|
-
self.input_cols,
|
307
|
-
self.label_cols,
|
308
|
-
self.sample_weight_col,
|
309
|
-
)
|
310
|
-
|
311
316
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
312
317
|
if self._drop_input_cols:
|
313
318
|
return []
|
@@ -495,11 +500,6 @@ class LassoLarsIC(BaseTransformer):
|
|
495
500
|
subproject=_SUBPROJECT,
|
496
501
|
custom_tags=dict([("autogen", True)]),
|
497
502
|
)
|
498
|
-
@telemetry.add_stmt_params_to_df(
|
499
|
-
project=_PROJECT,
|
500
|
-
subproject=_SUBPROJECT,
|
501
|
-
custom_tags=dict([("autogen", True)]),
|
502
|
-
)
|
503
503
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
504
504
|
"""Predict using the linear model
|
505
505
|
For more details on this function, see [sklearn.linear_model.LassoLarsIC.predict]
|
@@ -553,11 +553,6 @@ class LassoLarsIC(BaseTransformer):
|
|
553
553
|
subproject=_SUBPROJECT,
|
554
554
|
custom_tags=dict([("autogen", True)]),
|
555
555
|
)
|
556
|
-
@telemetry.add_stmt_params_to_df(
|
557
|
-
project=_PROJECT,
|
558
|
-
subproject=_SUBPROJECT,
|
559
|
-
custom_tags=dict([("autogen", True)]),
|
560
|
-
)
|
561
556
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
562
557
|
"""Method not supported for this class.
|
563
558
|
|
@@ -614,7 +609,8 @@ class LassoLarsIC(BaseTransformer):
|
|
614
609
|
if False:
|
615
610
|
self.fit(dataset)
|
616
611
|
assert self._sklearn_object is not None
|
617
|
-
|
612
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
613
|
+
return labels
|
618
614
|
else:
|
619
615
|
raise NotImplementedError
|
620
616
|
|
@@ -650,6 +646,7 @@ class LassoLarsIC(BaseTransformer):
|
|
650
646
|
output_cols = []
|
651
647
|
|
652
648
|
# Make sure column names are valid snowflake identifiers.
|
649
|
+
assert output_cols is not None # Make MyPy happy
|
653
650
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
654
651
|
|
655
652
|
return rv
|
@@ -660,11 +657,6 @@ class LassoLarsIC(BaseTransformer):
|
|
660
657
|
subproject=_SUBPROJECT,
|
661
658
|
custom_tags=dict([("autogen", True)]),
|
662
659
|
)
|
663
|
-
@telemetry.add_stmt_params_to_df(
|
664
|
-
project=_PROJECT,
|
665
|
-
subproject=_SUBPROJECT,
|
666
|
-
custom_tags=dict([("autogen", True)]),
|
667
|
-
)
|
668
660
|
def predict_proba(
|
669
661
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
670
662
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -705,11 +697,6 @@ class LassoLarsIC(BaseTransformer):
|
|
705
697
|
subproject=_SUBPROJECT,
|
706
698
|
custom_tags=dict([("autogen", True)]),
|
707
699
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
700
|
def predict_log_proba(
|
714
701
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
715
702
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -746,16 +733,6 @@ class LassoLarsIC(BaseTransformer):
|
|
746
733
|
return output_df
|
747
734
|
|
748
735
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
749
|
-
@telemetry.send_api_usage_telemetry(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
|
-
@telemetry.add_stmt_params_to_df(
|
755
|
-
project=_PROJECT,
|
756
|
-
subproject=_SUBPROJECT,
|
757
|
-
custom_tags=dict([("autogen", True)]),
|
758
|
-
)
|
759
736
|
def decision_function(
|
760
737
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
761
738
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -856,11 +833,6 @@ class LassoLarsIC(BaseTransformer):
|
|
856
833
|
subproject=_SUBPROJECT,
|
857
834
|
custom_tags=dict([("autogen", True)]),
|
858
835
|
)
|
859
|
-
@telemetry.add_stmt_params_to_df(
|
860
|
-
project=_PROJECT,
|
861
|
-
subproject=_SUBPROJECT,
|
862
|
-
custom_tags=dict([("autogen", True)]),
|
863
|
-
)
|
864
836
|
def kneighbors(
|
865
837
|
self,
|
866
838
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -920,9 +892,9 @@ class LassoLarsIC(BaseTransformer):
|
|
920
892
|
# For classifier, the type of predict is the same as the type of label
|
921
893
|
if self._sklearn_object._estimator_type == 'classifier':
|
922
894
|
# label columns is the desired type for output
|
923
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
895
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
924
896
|
# rename the output columns
|
925
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
897
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
926
898
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
927
899
|
([] if self._drop_input_cols else inputs)
|
928
900
|
+ outputs)
|