snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OPTICS(BaseTransformer):
|
57
58
|
r"""Estimate clustering structure from vector array
|
58
59
|
For more details on this class, see [sklearn.cluster.OPTICS]
|
@@ -60,6 +61,49 @@ class OPTICS(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
min_samples: int > 1 or float between 0 and 1, default=5
|
64
108
|
The number of samples in a neighborhood for a point to be considered as
|
65
109
|
a core point. Also, up and down steep regions can't have more than
|
@@ -165,42 +209,6 @@ class OPTICS(BaseTransformer):
|
|
165
209
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
166
210
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
167
211
|
for more details.
|
168
|
-
|
169
|
-
input_cols: Optional[Union[str, List[str]]]
|
170
|
-
A string or list of strings representing column names that contain features.
|
171
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
172
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
173
|
-
parameters are considered input columns.
|
174
|
-
|
175
|
-
label_cols: Optional[Union[str, List[str]]]
|
176
|
-
A string or list of strings representing column names that contain labels.
|
177
|
-
This is a required param for estimators, as there is no way to infer these
|
178
|
-
columns. If this parameter is not specified, then object is fitted without
|
179
|
-
labels (like a transformer).
|
180
|
-
|
181
|
-
output_cols: Optional[Union[str, List[str]]]
|
182
|
-
A string or list of strings representing column names that will store the
|
183
|
-
output of predict and transform operations. The length of output_cols must
|
184
|
-
match the expected number of output columns from the specific estimator or
|
185
|
-
transformer class used.
|
186
|
-
If this parameter is not specified, output column names are derived by
|
187
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
188
|
-
column names work for estimator's predict() method, but output_cols must
|
189
|
-
be set explicitly for transformers.
|
190
|
-
|
191
|
-
sample_weight_col: Optional[str]
|
192
|
-
A string representing the column name containing the sample weights.
|
193
|
-
This argument is only required when working with weighted datasets.
|
194
|
-
|
195
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
196
|
-
A string or a list of strings indicating column names to be excluded from any
|
197
|
-
operations (such as train, transform, or inference). These specified column(s)
|
198
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
199
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
200
|
-
columns, like index columns, during training or inference.
|
201
|
-
|
202
|
-
drop_input_cols: Optional[bool], default=False
|
203
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
204
212
|
"""
|
205
213
|
|
206
214
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -235,7 +243,7 @@ class OPTICS(BaseTransformer):
|
|
235
243
|
self.set_passthrough_cols(passthrough_cols)
|
236
244
|
self.set_drop_input_cols(drop_input_cols)
|
237
245
|
self.set_sample_weight_col(sample_weight_col)
|
238
|
-
deps = set(
|
246
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
239
247
|
|
240
248
|
self._deps = list(deps)
|
241
249
|
|
@@ -257,13 +265,14 @@ class OPTICS(BaseTransformer):
|
|
257
265
|
args=init_args,
|
258
266
|
klass=sklearn.cluster.OPTICS
|
259
267
|
)
|
260
|
-
self._sklearn_object = sklearn.cluster.OPTICS(
|
268
|
+
self._sklearn_object: Any = sklearn.cluster.OPTICS(
|
261
269
|
**cleaned_up_init_args,
|
262
270
|
)
|
263
271
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
264
272
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
265
273
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
266
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OPTICS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
274
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OPTICS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
275
|
+
self._autogenerated = True
|
267
276
|
|
268
277
|
def _get_rand_id(self) -> str:
|
269
278
|
"""
|
@@ -319,54 +328,48 @@ class OPTICS(BaseTransformer):
|
|
319
328
|
self
|
320
329
|
"""
|
321
330
|
self._infer_input_output_cols(dataset)
|
322
|
-
if isinstance(dataset,
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
self.
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
331
|
+
if isinstance(dataset, DataFrame):
|
332
|
+
session = dataset._session
|
333
|
+
assert session is not None # keep mypy happy
|
334
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
335
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
336
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
337
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
338
|
+
|
339
|
+
# Specify input columns so column pruning will be enforced
|
340
|
+
selected_cols = self._get_active_columns()
|
341
|
+
if len(selected_cols) > 0:
|
342
|
+
dataset = dataset.select(selected_cols)
|
343
|
+
|
344
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
345
|
+
|
346
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
347
|
+
if SNOWML_SPROC_ENV in os.environ:
|
348
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
349
|
+
project=_PROJECT,
|
350
|
+
subproject=_SUBPROJECT,
|
351
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OPTICS.__class__.__name__),
|
352
|
+
api_calls=[Session.call],
|
353
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
354
|
+
)
|
355
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
356
|
+
pd_df.columns = dataset.columns
|
357
|
+
dataset = pd_df
|
358
|
+
|
359
|
+
model_trainer = ModelTrainerBuilder.build(
|
360
|
+
estimator=self._sklearn_object,
|
361
|
+
dataset=dataset,
|
362
|
+
input_cols=self.input_cols,
|
363
|
+
label_cols=self.label_cols,
|
364
|
+
sample_weight_col=self.sample_weight_col,
|
365
|
+
autogenerated=self._autogenerated,
|
366
|
+
subproject=_SUBPROJECT
|
367
|
+
)
|
368
|
+
self._sklearn_object = model_trainer.train()
|
338
369
|
self._is_fitted = True
|
339
370
|
self._get_model_signatures(dataset)
|
340
371
|
return self
|
341
372
|
|
342
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
343
|
-
session = dataset._session
|
344
|
-
assert session is not None # keep mypy happy
|
345
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
346
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
347
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
348
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
349
|
-
|
350
|
-
# Specify input columns so column pruning will be enforced
|
351
|
-
selected_cols = self._get_active_columns()
|
352
|
-
if len(selected_cols) > 0:
|
353
|
-
dataset = dataset.select(selected_cols)
|
354
|
-
|
355
|
-
estimator = self._sklearn_object
|
356
|
-
assert estimator is not None # Keep mypy happy
|
357
|
-
|
358
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
359
|
-
|
360
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
361
|
-
dataset,
|
362
|
-
session,
|
363
|
-
estimator,
|
364
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
365
|
-
self.input_cols,
|
366
|
-
self.label_cols,
|
367
|
-
self.sample_weight_col,
|
368
|
-
)
|
369
|
-
|
370
373
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
371
374
|
if self._drop_input_cols:
|
372
375
|
return []
|
@@ -554,11 +557,6 @@ class OPTICS(BaseTransformer):
|
|
554
557
|
subproject=_SUBPROJECT,
|
555
558
|
custom_tags=dict([("autogen", True)]),
|
556
559
|
)
|
557
|
-
@telemetry.add_stmt_params_to_df(
|
558
|
-
project=_PROJECT,
|
559
|
-
subproject=_SUBPROJECT,
|
560
|
-
custom_tags=dict([("autogen", True)]),
|
561
|
-
)
|
562
560
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
563
561
|
"""Method not supported for this class.
|
564
562
|
|
@@ -610,11 +608,6 @@ class OPTICS(BaseTransformer):
|
|
610
608
|
subproject=_SUBPROJECT,
|
611
609
|
custom_tags=dict([("autogen", True)]),
|
612
610
|
)
|
613
|
-
@telemetry.add_stmt_params_to_df(
|
614
|
-
project=_PROJECT,
|
615
|
-
subproject=_SUBPROJECT,
|
616
|
-
custom_tags=dict([("autogen", True)]),
|
617
|
-
)
|
618
611
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
619
612
|
"""Method not supported for this class.
|
620
613
|
|
@@ -673,7 +666,8 @@ class OPTICS(BaseTransformer):
|
|
673
666
|
if True:
|
674
667
|
self.fit(dataset)
|
675
668
|
assert self._sklearn_object is not None
|
676
|
-
|
669
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
670
|
+
return labels
|
677
671
|
else:
|
678
672
|
raise NotImplementedError
|
679
673
|
|
@@ -709,6 +703,7 @@ class OPTICS(BaseTransformer):
|
|
709
703
|
output_cols = []
|
710
704
|
|
711
705
|
# Make sure column names are valid snowflake identifiers.
|
706
|
+
assert output_cols is not None # Make MyPy happy
|
712
707
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
713
708
|
|
714
709
|
return rv
|
@@ -719,11 +714,6 @@ class OPTICS(BaseTransformer):
|
|
719
714
|
subproject=_SUBPROJECT,
|
720
715
|
custom_tags=dict([("autogen", True)]),
|
721
716
|
)
|
722
|
-
@telemetry.add_stmt_params_to_df(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
717
|
def predict_proba(
|
728
718
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
729
719
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -764,11 +754,6 @@ class OPTICS(BaseTransformer):
|
|
764
754
|
subproject=_SUBPROJECT,
|
765
755
|
custom_tags=dict([("autogen", True)]),
|
766
756
|
)
|
767
|
-
@telemetry.add_stmt_params_to_df(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
757
|
def predict_log_proba(
|
773
758
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
774
759
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -805,16 +790,6 @@ class OPTICS(BaseTransformer):
|
|
805
790
|
return output_df
|
806
791
|
|
807
792
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
808
|
-
@telemetry.send_api_usage_telemetry(
|
809
|
-
project=_PROJECT,
|
810
|
-
subproject=_SUBPROJECT,
|
811
|
-
custom_tags=dict([("autogen", True)]),
|
812
|
-
)
|
813
|
-
@telemetry.add_stmt_params_to_df(
|
814
|
-
project=_PROJECT,
|
815
|
-
subproject=_SUBPROJECT,
|
816
|
-
custom_tags=dict([("autogen", True)]),
|
817
|
-
)
|
818
793
|
def decision_function(
|
819
794
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
820
795
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -913,11 +888,6 @@ class OPTICS(BaseTransformer):
|
|
913
888
|
subproject=_SUBPROJECT,
|
914
889
|
custom_tags=dict([("autogen", True)]),
|
915
890
|
)
|
916
|
-
@telemetry.add_stmt_params_to_df(
|
917
|
-
project=_PROJECT,
|
918
|
-
subproject=_SUBPROJECT,
|
919
|
-
custom_tags=dict([("autogen", True)]),
|
920
|
-
)
|
921
891
|
def kneighbors(
|
922
892
|
self,
|
923
893
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -977,9 +947,9 @@ class OPTICS(BaseTransformer):
|
|
977
947
|
# For classifier, the type of predict is the same as the type of label
|
978
948
|
if self._sklearn_object._estimator_type == 'classifier':
|
979
949
|
# label columns is the desired type for output
|
980
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
950
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
981
951
|
# rename the output columns
|
982
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
952
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
983
953
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
984
954
|
([] if self._drop_input_cols else inputs)
|
985
955
|
+ outputs)
|