snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SequentialFeatureSelector(BaseTransformer):
57
58
  r"""Transformer that performs Sequential Feature Selection
58
59
  For more details on this class, see [sklearn.feature_selection.SequentialFeatureSelector]
@@ -60,6 +61,49 @@ class SequentialFeatureSelector(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  estimator: estimator instance
64
108
  An unfitted estimator.
65
109
 
@@ -119,42 +163,6 @@ class SequentialFeatureSelector(BaseTransformer):
119
163
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
120
164
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
121
165
  for more details.
122
-
123
- input_cols: Optional[Union[str, List[str]]]
124
- A string or list of strings representing column names that contain features.
125
- If this parameter is not specified, all columns in the input DataFrame except
126
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
127
- parameters are considered input columns.
128
-
129
- label_cols: Optional[Union[str, List[str]]]
130
- A string or list of strings representing column names that contain labels.
131
- This is a required param for estimators, as there is no way to infer these
132
- columns. If this parameter is not specified, then object is fitted without
133
- labels (like a transformer).
134
-
135
- output_cols: Optional[Union[str, List[str]]]
136
- A string or list of strings representing column names that will store the
137
- output of predict and transform operations. The length of output_cols must
138
- match the expected number of output columns from the specific estimator or
139
- transformer class used.
140
- If this parameter is not specified, output column names are derived by
141
- adding an OUTPUT_ prefix to the label column names. These inferred output
142
- column names work for estimator's predict() method, but output_cols must
143
- be set explicitly for transformers.
144
-
145
- sample_weight_col: Optional[str]
146
- A string representing the column name containing the sample weights.
147
- This argument is only required when working with weighted datasets.
148
-
149
- passthrough_cols: Optional[Union[str, List[str]]]
150
- A string or a list of strings indicating column names to be excluded from any
151
- operations (such as train, transform, or inference). These specified column(s)
152
- will remain untouched throughout the process. This option is helpful in scenarios
153
- requiring automatic input_cols inference, but need to avoid using specific
154
- columns, like index columns, during training or inference.
155
-
156
- drop_input_cols: Optional[bool], default=False
157
- If set, the response of predict(), transform() methods will not contain input columns.
158
166
  """
159
167
 
160
168
  def __init__( # type: ignore[no-untyped-def]
@@ -182,7 +190,7 @@ class SequentialFeatureSelector(BaseTransformer):
182
190
  self.set_passthrough_cols(passthrough_cols)
183
191
  self.set_drop_input_cols(drop_input_cols)
184
192
  self.set_sample_weight_col(sample_weight_col)
185
- deps = set(SklearnWrapperProvider().dependencies)
193
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
186
194
  deps = deps | gather_dependencies(estimator)
187
195
  self._deps = list(deps)
188
196
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -197,13 +205,14 @@ class SequentialFeatureSelector(BaseTransformer):
197
205
  args=init_args,
198
206
  klass=sklearn.feature_selection.SequentialFeatureSelector
199
207
  )
200
- self._sklearn_object = sklearn.feature_selection.SequentialFeatureSelector(
208
+ self._sklearn_object: Any = sklearn.feature_selection.SequentialFeatureSelector(
201
209
  **cleaned_up_init_args,
202
210
  )
203
211
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
204
212
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
205
213
  self._snowpark_cols: Optional[List[str]] = self.input_cols
206
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SequentialFeatureSelector.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
214
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SequentialFeatureSelector.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
215
+ self._autogenerated = True
207
216
 
208
217
  def _get_rand_id(self) -> str:
209
218
  """
@@ -259,54 +268,48 @@ class SequentialFeatureSelector(BaseTransformer):
259
268
  self
260
269
  """
261
270
  self._infer_input_output_cols(dataset)
262
- if isinstance(dataset, pd.DataFrame):
263
- assert self._sklearn_object is not None # keep mypy happy
264
- self._sklearn_object = self._handlers.fit_pandas(
265
- dataset,
266
- self._sklearn_object,
267
- self.input_cols,
268
- self.label_cols,
269
- self.sample_weight_col
270
- )
271
- elif isinstance(dataset, DataFrame):
272
- self._fit_snowpark(dataset)
273
- else:
274
- raise TypeError(
275
- f"Unexpected dataset type: {type(dataset)}."
276
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
277
- )
271
+ if isinstance(dataset, DataFrame):
272
+ session = dataset._session
273
+ assert session is not None # keep mypy happy
274
+ # Validate that key package version in user workspace are supported in snowflake conda channel
275
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
276
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
277
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
278
+
279
+ # Specify input columns so column pruning will be enforced
280
+ selected_cols = self._get_active_columns()
281
+ if len(selected_cols) > 0:
282
+ dataset = dataset.select(selected_cols)
283
+
284
+ self._snowpark_cols = dataset.select(self.input_cols).columns
285
+
286
+ # If we are already in a stored procedure, no need to kick off another one.
287
+ if SNOWML_SPROC_ENV in os.environ:
288
+ statement_params = telemetry.get_function_usage_statement_params(
289
+ project=_PROJECT,
290
+ subproject=_SUBPROJECT,
291
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SequentialFeatureSelector.__class__.__name__),
292
+ api_calls=[Session.call],
293
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
+ )
295
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
296
+ pd_df.columns = dataset.columns
297
+ dataset = pd_df
298
+
299
+ model_trainer = ModelTrainerBuilder.build(
300
+ estimator=self._sklearn_object,
301
+ dataset=dataset,
302
+ input_cols=self.input_cols,
303
+ label_cols=self.label_cols,
304
+ sample_weight_col=self.sample_weight_col,
305
+ autogenerated=self._autogenerated,
306
+ subproject=_SUBPROJECT
307
+ )
308
+ self._sklearn_object = model_trainer.train()
278
309
  self._is_fitted = True
279
310
  self._get_model_signatures(dataset)
280
311
  return self
281
312
 
282
- def _fit_snowpark(self, dataset: DataFrame) -> None:
283
- session = dataset._session
284
- assert session is not None # keep mypy happy
285
- # Validate that key package version in user workspace are supported in snowflake conda channel
286
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
287
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
288
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
289
-
290
- # Specify input columns so column pruning will be enforced
291
- selected_cols = self._get_active_columns()
292
- if len(selected_cols) > 0:
293
- dataset = dataset.select(selected_cols)
294
-
295
- estimator = self._sklearn_object
296
- assert estimator is not None # Keep mypy happy
297
-
298
- self._snowpark_cols = dataset.select(self.input_cols).columns
299
-
300
- self._sklearn_object = self._handlers.fit_snowpark(
301
- dataset,
302
- session,
303
- estimator,
304
- ["snowflake-snowpark-python"] + self._get_dependencies(),
305
- self.input_cols,
306
- self.label_cols,
307
- self.sample_weight_col,
308
- )
309
-
310
313
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
311
314
  if self._drop_input_cols:
312
315
  return []
@@ -494,11 +497,6 @@ class SequentialFeatureSelector(BaseTransformer):
494
497
  subproject=_SUBPROJECT,
495
498
  custom_tags=dict([("autogen", True)]),
496
499
  )
497
- @telemetry.add_stmt_params_to_df(
498
- project=_PROJECT,
499
- subproject=_SUBPROJECT,
500
- custom_tags=dict([("autogen", True)]),
501
- )
502
500
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
503
501
  """Method not supported for this class.
504
502
 
@@ -550,11 +548,6 @@ class SequentialFeatureSelector(BaseTransformer):
550
548
  subproject=_SUBPROJECT,
551
549
  custom_tags=dict([("autogen", True)]),
552
550
  )
553
- @telemetry.add_stmt_params_to_df(
554
- project=_PROJECT,
555
- subproject=_SUBPROJECT,
556
- custom_tags=dict([("autogen", True)]),
557
- )
558
551
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
559
552
  """Reduce X to the selected features
560
553
  For more details on this function, see [sklearn.feature_selection.SequentialFeatureSelector.transform]
@@ -613,7 +606,8 @@ class SequentialFeatureSelector(BaseTransformer):
613
606
  if False:
614
607
  self.fit(dataset)
615
608
  assert self._sklearn_object is not None
616
- return self._sklearn_object.labels_
609
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
610
+ return labels
617
611
  else:
618
612
  raise NotImplementedError
619
613
 
@@ -649,6 +643,7 @@ class SequentialFeatureSelector(BaseTransformer):
649
643
  output_cols = []
650
644
 
651
645
  # Make sure column names are valid snowflake identifiers.
646
+ assert output_cols is not None # Make MyPy happy
652
647
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
653
648
 
654
649
  return rv
@@ -659,11 +654,6 @@ class SequentialFeatureSelector(BaseTransformer):
659
654
  subproject=_SUBPROJECT,
660
655
  custom_tags=dict([("autogen", True)]),
661
656
  )
662
- @telemetry.add_stmt_params_to_df(
663
- project=_PROJECT,
664
- subproject=_SUBPROJECT,
665
- custom_tags=dict([("autogen", True)]),
666
- )
667
657
  def predict_proba(
668
658
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
669
659
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -704,11 +694,6 @@ class SequentialFeatureSelector(BaseTransformer):
704
694
  subproject=_SUBPROJECT,
705
695
  custom_tags=dict([("autogen", True)]),
706
696
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
697
  def predict_log_proba(
713
698
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
714
699
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -745,16 +730,6 @@ class SequentialFeatureSelector(BaseTransformer):
745
730
  return output_df
746
731
 
747
732
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
748
- @telemetry.send_api_usage_telemetry(
749
- project=_PROJECT,
750
- subproject=_SUBPROJECT,
751
- custom_tags=dict([("autogen", True)]),
752
- )
753
- @telemetry.add_stmt_params_to_df(
754
- project=_PROJECT,
755
- subproject=_SUBPROJECT,
756
- custom_tags=dict([("autogen", True)]),
757
- )
758
733
  def decision_function(
759
734
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
760
735
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -853,11 +828,6 @@ class SequentialFeatureSelector(BaseTransformer):
853
828
  subproject=_SUBPROJECT,
854
829
  custom_tags=dict([("autogen", True)]),
855
830
  )
856
- @telemetry.add_stmt_params_to_df(
857
- project=_PROJECT,
858
- subproject=_SUBPROJECT,
859
- custom_tags=dict([("autogen", True)]),
860
- )
861
831
  def kneighbors(
862
832
  self,
863
833
  dataset: Union[DataFrame, pd.DataFrame],
@@ -917,9 +887,9 @@ class SequentialFeatureSelector(BaseTransformer):
917
887
  # For classifier, the type of predict is the same as the type of label
918
888
  if self._sklearn_object._estimator_type == 'classifier':
919
889
  # label columns is the desired type for output
920
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
890
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
921
891
  # rename the output columns
922
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
892
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
923
893
  self._model_signature_dict["predict"] = ModelSignature(inputs,
924
894
  ([] if self._drop_input_cols else inputs)
925
895
  + outputs)
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class VarianceThreshold(BaseTransformer):
57
58
  r"""Feature selector that removes all low-variance features
58
59
  For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
@@ -60,46 +61,53 @@ class VarianceThreshold(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- threshold: float, default=0
64
- Features with a training-set variance lower than this threshold will
65
- be removed. The default is to keep all features with non-zero variance,
66
- i.e. remove the features that have the same value in all samples.
67
64
 
68
65
  input_cols: Optional[Union[str, List[str]]]
69
66
  A string or list of strings representing column names that contain features.
70
67
  If this parameter is not specified, all columns in the input DataFrame except
71
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
72
- parameters are considered input columns.
73
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
74
72
  label_cols: Optional[Union[str, List[str]]]
75
- A string or list of strings representing column names that contain labels.
76
- This is a required param for estimators, as there is no way to infer these
77
- columns. If this parameter is not specified, then object is fitted without
78
- labels (like a transformer).
79
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
80
75
  output_cols: Optional[Union[str, List[str]]]
81
76
  A string or list of strings representing column names that will store the
82
77
  output of predict and transform operations. The length of output_cols must
83
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
84
79
  transformer class used.
85
- If this parameter is not specified, output column names are derived by
86
- adding an OUTPUT_ prefix to the label column names. These inferred output
87
- column names work for estimator's predict() method, but output_cols must
88
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
89
 
90
90
  sample_weight_col: Optional[str]
91
91
  A string representing the column name containing the sample weights.
92
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
93
95
 
94
96
  passthrough_cols: Optional[Union[str, List[str]]]
95
97
  A string or a list of strings indicating column names to be excluded from any
96
98
  operations (such as train, transform, or inference). These specified column(s)
97
99
  will remain untouched throughout the process. This option is helpful in scenarios
98
100
  requiring automatic input_cols inference, but need to avoid using specific
99
- columns, like index columns, during training or inference.
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
100
103
 
101
104
  drop_input_cols: Optional[bool], default=False
102
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ threshold: float, default=0
108
+ Features with a training-set variance lower than this threshold will
109
+ be removed. The default is to keep all features with non-zero variance,
110
+ i.e. remove the features that have the same value in all samples.
103
111
  """
104
112
 
105
113
  def __init__( # type: ignore[no-untyped-def]
@@ -121,7 +129,7 @@ class VarianceThreshold(BaseTransformer):
121
129
  self.set_passthrough_cols(passthrough_cols)
122
130
  self.set_drop_input_cols(drop_input_cols)
123
131
  self.set_sample_weight_col(sample_weight_col)
124
- deps = set(SklearnWrapperProvider().dependencies)
132
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
125
133
 
126
134
  self._deps = list(deps)
127
135
 
@@ -130,13 +138,14 @@ class VarianceThreshold(BaseTransformer):
130
138
  args=init_args,
131
139
  klass=sklearn.feature_selection.VarianceThreshold
132
140
  )
133
- self._sklearn_object = sklearn.feature_selection.VarianceThreshold(
141
+ self._sklearn_object: Any = sklearn.feature_selection.VarianceThreshold(
134
142
  **cleaned_up_init_args,
135
143
  )
136
144
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
137
145
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
138
146
  self._snowpark_cols: Optional[List[str]] = self.input_cols
139
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
147
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
148
+ self._autogenerated = True
140
149
 
141
150
  def _get_rand_id(self) -> str:
142
151
  """
@@ -192,54 +201,48 @@ class VarianceThreshold(BaseTransformer):
192
201
  self
193
202
  """
194
203
  self._infer_input_output_cols(dataset)
195
- if isinstance(dataset, pd.DataFrame):
196
- assert self._sklearn_object is not None # keep mypy happy
197
- self._sklearn_object = self._handlers.fit_pandas(
198
- dataset,
199
- self._sklearn_object,
200
- self.input_cols,
201
- self.label_cols,
202
- self.sample_weight_col
203
- )
204
- elif isinstance(dataset, DataFrame):
205
- self._fit_snowpark(dataset)
206
- else:
207
- raise TypeError(
208
- f"Unexpected dataset type: {type(dataset)}."
209
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
210
- )
204
+ if isinstance(dataset, DataFrame):
205
+ session = dataset._session
206
+ assert session is not None # keep mypy happy
207
+ # Validate that key package version in user workspace are supported in snowflake conda channel
208
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
209
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
210
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
211
+
212
+ # Specify input columns so column pruning will be enforced
213
+ selected_cols = self._get_active_columns()
214
+ if len(selected_cols) > 0:
215
+ dataset = dataset.select(selected_cols)
216
+
217
+ self._snowpark_cols = dataset.select(self.input_cols).columns
218
+
219
+ # If we are already in a stored procedure, no need to kick off another one.
220
+ if SNOWML_SPROC_ENV in os.environ:
221
+ statement_params = telemetry.get_function_usage_statement_params(
222
+ project=_PROJECT,
223
+ subproject=_SUBPROJECT,
224
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VarianceThreshold.__class__.__name__),
225
+ api_calls=[Session.call],
226
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
227
+ )
228
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
229
+ pd_df.columns = dataset.columns
230
+ dataset = pd_df
231
+
232
+ model_trainer = ModelTrainerBuilder.build(
233
+ estimator=self._sklearn_object,
234
+ dataset=dataset,
235
+ input_cols=self.input_cols,
236
+ label_cols=self.label_cols,
237
+ sample_weight_col=self.sample_weight_col,
238
+ autogenerated=self._autogenerated,
239
+ subproject=_SUBPROJECT
240
+ )
241
+ self._sklearn_object = model_trainer.train()
211
242
  self._is_fitted = True
212
243
  self._get_model_signatures(dataset)
213
244
  return self
214
245
 
215
- def _fit_snowpark(self, dataset: DataFrame) -> None:
216
- session = dataset._session
217
- assert session is not None # keep mypy happy
218
- # Validate that key package version in user workspace are supported in snowflake conda channel
219
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
220
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
221
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
222
-
223
- # Specify input columns so column pruning will be enforced
224
- selected_cols = self._get_active_columns()
225
- if len(selected_cols) > 0:
226
- dataset = dataset.select(selected_cols)
227
-
228
- estimator = self._sklearn_object
229
- assert estimator is not None # Keep mypy happy
230
-
231
- self._snowpark_cols = dataset.select(self.input_cols).columns
232
-
233
- self._sklearn_object = self._handlers.fit_snowpark(
234
- dataset,
235
- session,
236
- estimator,
237
- ["snowflake-snowpark-python"] + self._get_dependencies(),
238
- self.input_cols,
239
- self.label_cols,
240
- self.sample_weight_col,
241
- )
242
-
243
246
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
244
247
  if self._drop_input_cols:
245
248
  return []
@@ -427,11 +430,6 @@ class VarianceThreshold(BaseTransformer):
427
430
  subproject=_SUBPROJECT,
428
431
  custom_tags=dict([("autogen", True)]),
429
432
  )
430
- @telemetry.add_stmt_params_to_df(
431
- project=_PROJECT,
432
- subproject=_SUBPROJECT,
433
- custom_tags=dict([("autogen", True)]),
434
- )
435
433
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
436
434
  """Method not supported for this class.
437
435
 
@@ -483,11 +481,6 @@ class VarianceThreshold(BaseTransformer):
483
481
  subproject=_SUBPROJECT,
484
482
  custom_tags=dict([("autogen", True)]),
485
483
  )
486
- @telemetry.add_stmt_params_to_df(
487
- project=_PROJECT,
488
- subproject=_SUBPROJECT,
489
- custom_tags=dict([("autogen", True)]),
490
- )
491
484
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
492
485
  """Reduce X to the selected features
493
486
  For more details on this function, see [sklearn.feature_selection.VarianceThreshold.transform]
@@ -546,7 +539,8 @@ class VarianceThreshold(BaseTransformer):
546
539
  if False:
547
540
  self.fit(dataset)
548
541
  assert self._sklearn_object is not None
549
- return self._sklearn_object.labels_
542
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
543
+ return labels
550
544
  else:
551
545
  raise NotImplementedError
552
546
 
@@ -582,6 +576,7 @@ class VarianceThreshold(BaseTransformer):
582
576
  output_cols = []
583
577
 
584
578
  # Make sure column names are valid snowflake identifiers.
579
+ assert output_cols is not None # Make MyPy happy
585
580
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
586
581
 
587
582
  return rv
@@ -592,11 +587,6 @@ class VarianceThreshold(BaseTransformer):
592
587
  subproject=_SUBPROJECT,
593
588
  custom_tags=dict([("autogen", True)]),
594
589
  )
595
- @telemetry.add_stmt_params_to_df(
596
- project=_PROJECT,
597
- subproject=_SUBPROJECT,
598
- custom_tags=dict([("autogen", True)]),
599
- )
600
590
  def predict_proba(
601
591
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
602
592
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -637,11 +627,6 @@ class VarianceThreshold(BaseTransformer):
637
627
  subproject=_SUBPROJECT,
638
628
  custom_tags=dict([("autogen", True)]),
639
629
  )
640
- @telemetry.add_stmt_params_to_df(
641
- project=_PROJECT,
642
- subproject=_SUBPROJECT,
643
- custom_tags=dict([("autogen", True)]),
644
- )
645
630
  def predict_log_proba(
646
631
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
647
632
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -678,16 +663,6 @@ class VarianceThreshold(BaseTransformer):
678
663
  return output_df
679
664
 
680
665
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
681
- @telemetry.send_api_usage_telemetry(
682
- project=_PROJECT,
683
- subproject=_SUBPROJECT,
684
- custom_tags=dict([("autogen", True)]),
685
- )
686
- @telemetry.add_stmt_params_to_df(
687
- project=_PROJECT,
688
- subproject=_SUBPROJECT,
689
- custom_tags=dict([("autogen", True)]),
690
- )
691
666
  def decision_function(
692
667
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
693
668
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -786,11 +761,6 @@ class VarianceThreshold(BaseTransformer):
786
761
  subproject=_SUBPROJECT,
787
762
  custom_tags=dict([("autogen", True)]),
788
763
  )
789
- @telemetry.add_stmt_params_to_df(
790
- project=_PROJECT,
791
- subproject=_SUBPROJECT,
792
- custom_tags=dict([("autogen", True)]),
793
- )
794
764
  def kneighbors(
795
765
  self,
796
766
  dataset: Union[DataFrame, pd.DataFrame],
@@ -850,9 +820,9 @@ class VarianceThreshold(BaseTransformer):
850
820
  # For classifier, the type of predict is the same as the type of label
851
821
  if self._sklearn_object._estimator_type == 'classifier':
852
822
  # label columns is the desired type for output
853
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
823
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
854
824
  # rename the output columns
855
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
825
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
856
826
  self._model_signature_dict["predict"] = ModelSignature(inputs,
857
827
  ([] if self._drop_input_cols else inputs)
858
828
  + outputs)