snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SGDOneClassSVM(BaseTransformer):
57
58
  r"""Solves linear One-Class SVM using Stochastic Gradient Descent
58
59
  For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
@@ -60,6 +61,49 @@ class SGDOneClassSVM(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  nu: float, default=0.5
64
108
  The nu parameter of the One Class SVM: an upper bound on the
65
109
  fraction of training errors and a lower bound of the fraction of
@@ -132,42 +176,6 @@ class SGDOneClassSVM(BaseTransformer):
132
176
  averaging will begin once the total number of samples seen reaches
133
177
  average. So ``average=10`` will begin averaging after seeing 10
134
178
  samples.
135
-
136
- input_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain features.
138
- If this parameter is not specified, all columns in the input DataFrame except
139
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
140
- parameters are considered input columns.
141
-
142
- label_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that contain labels.
144
- This is a required param for estimators, as there is no way to infer these
145
- columns. If this parameter is not specified, then object is fitted without
146
- labels (like a transformer).
147
-
148
- output_cols: Optional[Union[str, List[str]]]
149
- A string or list of strings representing column names that will store the
150
- output of predict and transform operations. The length of output_cols must
151
- match the expected number of output columns from the specific estimator or
152
- transformer class used.
153
- If this parameter is not specified, output column names are derived by
154
- adding an OUTPUT_ prefix to the label column names. These inferred output
155
- column names work for estimator's predict() method, but output_cols must
156
- be set explicitly for transformers.
157
-
158
- sample_weight_col: Optional[str]
159
- A string representing the column name containing the sample weights.
160
- This argument is only required when working with weighted datasets.
161
-
162
- passthrough_cols: Optional[Union[str, List[str]]]
163
- A string or a list of strings indicating column names to be excluded from any
164
- operations (such as train, transform, or inference). These specified column(s)
165
- will remain untouched throughout the process. This option is helpful in scenarios
166
- requiring automatic input_cols inference, but need to avoid using specific
167
- columns, like index columns, during training or inference.
168
-
169
- drop_input_cols: Optional[bool], default=False
170
- If set, the response of predict(), transform() methods will not contain input columns.
171
179
  """
172
180
 
173
181
  def __init__( # type: ignore[no-untyped-def]
@@ -200,7 +208,7 @@ class SGDOneClassSVM(BaseTransformer):
200
208
  self.set_passthrough_cols(passthrough_cols)
201
209
  self.set_drop_input_cols(drop_input_cols)
202
210
  self.set_sample_weight_col(sample_weight_col)
203
- deps = set(SklearnWrapperProvider().dependencies)
211
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
204
212
 
205
213
  self._deps = list(deps)
206
214
 
@@ -220,13 +228,14 @@ class SGDOneClassSVM(BaseTransformer):
220
228
  args=init_args,
221
229
  klass=sklearn.linear_model.SGDOneClassSVM
222
230
  )
223
- self._sklearn_object = sklearn.linear_model.SGDOneClassSVM(
231
+ self._sklearn_object: Any = sklearn.linear_model.SGDOneClassSVM(
224
232
  **cleaned_up_init_args,
225
233
  )
226
234
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
227
235
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
228
236
  self._snowpark_cols: Optional[List[str]] = self.input_cols
229
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
237
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
238
+ self._autogenerated = True
230
239
 
231
240
  def _get_rand_id(self) -> str:
232
241
  """
@@ -282,54 +291,48 @@ class SGDOneClassSVM(BaseTransformer):
282
291
  self
283
292
  """
284
293
  self._infer_input_output_cols(dataset)
285
- if isinstance(dataset, pd.DataFrame):
286
- assert self._sklearn_object is not None # keep mypy happy
287
- self._sklearn_object = self._handlers.fit_pandas(
288
- dataset,
289
- self._sklearn_object,
290
- self.input_cols,
291
- self.label_cols,
292
- self.sample_weight_col
293
- )
294
- elif isinstance(dataset, DataFrame):
295
- self._fit_snowpark(dataset)
296
- else:
297
- raise TypeError(
298
- f"Unexpected dataset type: {type(dataset)}."
299
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
300
- )
294
+ if isinstance(dataset, DataFrame):
295
+ session = dataset._session
296
+ assert session is not None # keep mypy happy
297
+ # Validate that key package version in user workspace are supported in snowflake conda channel
298
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
299
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
300
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
301
+
302
+ # Specify input columns so column pruning will be enforced
303
+ selected_cols = self._get_active_columns()
304
+ if len(selected_cols) > 0:
305
+ dataset = dataset.select(selected_cols)
306
+
307
+ self._snowpark_cols = dataset.select(self.input_cols).columns
308
+
309
+ # If we are already in a stored procedure, no need to kick off another one.
310
+ if SNOWML_SPROC_ENV in os.environ:
311
+ statement_params = telemetry.get_function_usage_statement_params(
312
+ project=_PROJECT,
313
+ subproject=_SUBPROJECT,
314
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
315
+ api_calls=[Session.call],
316
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
317
+ )
318
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
319
+ pd_df.columns = dataset.columns
320
+ dataset = pd_df
321
+
322
+ model_trainer = ModelTrainerBuilder.build(
323
+ estimator=self._sklearn_object,
324
+ dataset=dataset,
325
+ input_cols=self.input_cols,
326
+ label_cols=self.label_cols,
327
+ sample_weight_col=self.sample_weight_col,
328
+ autogenerated=self._autogenerated,
329
+ subproject=_SUBPROJECT
330
+ )
331
+ self._sklearn_object = model_trainer.train()
301
332
  self._is_fitted = True
302
333
  self._get_model_signatures(dataset)
303
334
  return self
304
335
 
305
- def _fit_snowpark(self, dataset: DataFrame) -> None:
306
- session = dataset._session
307
- assert session is not None # keep mypy happy
308
- # Validate that key package version in user workspace are supported in snowflake conda channel
309
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
310
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
311
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
312
-
313
- # Specify input columns so column pruning will be enforced
314
- selected_cols = self._get_active_columns()
315
- if len(selected_cols) > 0:
316
- dataset = dataset.select(selected_cols)
317
-
318
- estimator = self._sklearn_object
319
- assert estimator is not None # Keep mypy happy
320
-
321
- self._snowpark_cols = dataset.select(self.input_cols).columns
322
-
323
- self._sklearn_object = self._handlers.fit_snowpark(
324
- dataset,
325
- session,
326
- estimator,
327
- ["snowflake-snowpark-python"] + self._get_dependencies(),
328
- self.input_cols,
329
- self.label_cols,
330
- self.sample_weight_col,
331
- )
332
-
333
336
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
334
337
  if self._drop_input_cols:
335
338
  return []
@@ -517,11 +520,6 @@ class SGDOneClassSVM(BaseTransformer):
517
520
  subproject=_SUBPROJECT,
518
521
  custom_tags=dict([("autogen", True)]),
519
522
  )
520
- @telemetry.add_stmt_params_to_df(
521
- project=_PROJECT,
522
- subproject=_SUBPROJECT,
523
- custom_tags=dict([("autogen", True)]),
524
- )
525
523
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
526
524
  """Return labels (1 inlier, -1 outlier) of the samples
527
525
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.predict]
@@ -575,11 +573,6 @@ class SGDOneClassSVM(BaseTransformer):
575
573
  subproject=_SUBPROJECT,
576
574
  custom_tags=dict([("autogen", True)]),
577
575
  )
578
- @telemetry.add_stmt_params_to_df(
579
- project=_PROJECT,
580
- subproject=_SUBPROJECT,
581
- custom_tags=dict([("autogen", True)]),
582
- )
583
576
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
584
577
  """Method not supported for this class.
585
578
 
@@ -638,7 +631,8 @@ class SGDOneClassSVM(BaseTransformer):
638
631
  if False:
639
632
  self.fit(dataset)
640
633
  assert self._sklearn_object is not None
641
- return self._sklearn_object.labels_
634
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
635
+ return labels
642
636
  else:
643
637
  raise NotImplementedError
644
638
 
@@ -674,6 +668,7 @@ class SGDOneClassSVM(BaseTransformer):
674
668
  output_cols = []
675
669
 
676
670
  # Make sure column names are valid snowflake identifiers.
671
+ assert output_cols is not None # Make MyPy happy
677
672
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
678
673
 
679
674
  return rv
@@ -684,11 +679,6 @@ class SGDOneClassSVM(BaseTransformer):
684
679
  subproject=_SUBPROJECT,
685
680
  custom_tags=dict([("autogen", True)]),
686
681
  )
687
- @telemetry.add_stmt_params_to_df(
688
- project=_PROJECT,
689
- subproject=_SUBPROJECT,
690
- custom_tags=dict([("autogen", True)]),
691
- )
692
682
  def predict_proba(
693
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
694
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -729,11 +719,6 @@ class SGDOneClassSVM(BaseTransformer):
729
719
  subproject=_SUBPROJECT,
730
720
  custom_tags=dict([("autogen", True)]),
731
721
  )
732
- @telemetry.add_stmt_params_to_df(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
722
  def predict_log_proba(
738
723
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
739
724
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -770,16 +755,6 @@ class SGDOneClassSVM(BaseTransformer):
770
755
  return output_df
771
756
 
772
757
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
773
- @telemetry.send_api_usage_telemetry(
774
- project=_PROJECT,
775
- subproject=_SUBPROJECT,
776
- custom_tags=dict([("autogen", True)]),
777
- )
778
- @telemetry.add_stmt_params_to_df(
779
- project=_PROJECT,
780
- subproject=_SUBPROJECT,
781
- custom_tags=dict([("autogen", True)]),
782
- )
783
758
  def decision_function(
784
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
785
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -880,11 +855,6 @@ class SGDOneClassSVM(BaseTransformer):
880
855
  subproject=_SUBPROJECT,
881
856
  custom_tags=dict([("autogen", True)]),
882
857
  )
883
- @telemetry.add_stmt_params_to_df(
884
- project=_PROJECT,
885
- subproject=_SUBPROJECT,
886
- custom_tags=dict([("autogen", True)]),
887
- )
888
858
  def kneighbors(
889
859
  self,
890
860
  dataset: Union[DataFrame, pd.DataFrame],
@@ -944,9 +914,9 @@ class SGDOneClassSVM(BaseTransformer):
944
914
  # For classifier, the type of predict is the same as the type of label
945
915
  if self._sklearn_object._estimator_type == 'classifier':
946
916
  # label columns is the desired type for output
947
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
917
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
948
918
  # rename the output columns
949
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
919
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
950
920
  self._model_signature_dict["predict"] = ModelSignature(inputs,
951
921
  ([] if self._drop_input_cols else inputs)
952
922
  + outputs)