snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SGDOneClassSVM(BaseTransformer):
|
57
58
|
r"""Solves linear One-Class SVM using Stochastic Gradient Descent
|
58
59
|
For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
|
@@ -60,6 +61,49 @@ class SGDOneClassSVM(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
nu: float, default=0.5
|
64
108
|
The nu parameter of the One Class SVM: an upper bound on the
|
65
109
|
fraction of training errors and a lower bound of the fraction of
|
@@ -132,42 +176,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
132
176
|
averaging will begin once the total number of samples seen reaches
|
133
177
|
average. So ``average=10`` will begin averaging after seeing 10
|
134
178
|
samples.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
140
|
-
parameters are considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or a list of strings indicating column names to be excluded from any
|
164
|
-
operations (such as train, transform, or inference). These specified column(s)
|
165
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
166
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
167
|
-
columns, like index columns, during training or inference.
|
168
|
-
|
169
|
-
drop_input_cols: Optional[bool], default=False
|
170
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
171
179
|
"""
|
172
180
|
|
173
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -200,7 +208,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
200
208
|
self.set_passthrough_cols(passthrough_cols)
|
201
209
|
self.set_drop_input_cols(drop_input_cols)
|
202
210
|
self.set_sample_weight_col(sample_weight_col)
|
203
|
-
deps = set(
|
211
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
204
212
|
|
205
213
|
self._deps = list(deps)
|
206
214
|
|
@@ -220,13 +228,14 @@ class SGDOneClassSVM(BaseTransformer):
|
|
220
228
|
args=init_args,
|
221
229
|
klass=sklearn.linear_model.SGDOneClassSVM
|
222
230
|
)
|
223
|
-
self._sklearn_object = sklearn.linear_model.SGDOneClassSVM(
|
231
|
+
self._sklearn_object: Any = sklearn.linear_model.SGDOneClassSVM(
|
224
232
|
**cleaned_up_init_args,
|
225
233
|
)
|
226
234
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
227
235
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
228
236
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
229
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
237
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
238
|
+
self._autogenerated = True
|
230
239
|
|
231
240
|
def _get_rand_id(self) -> str:
|
232
241
|
"""
|
@@ -282,54 +291,48 @@ class SGDOneClassSVM(BaseTransformer):
|
|
282
291
|
self
|
283
292
|
"""
|
284
293
|
self._infer_input_output_cols(dataset)
|
285
|
-
if isinstance(dataset,
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
self.
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
294
|
+
if isinstance(dataset, DataFrame):
|
295
|
+
session = dataset._session
|
296
|
+
assert session is not None # keep mypy happy
|
297
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
+
|
302
|
+
# Specify input columns so column pruning will be enforced
|
303
|
+
selected_cols = self._get_active_columns()
|
304
|
+
if len(selected_cols) > 0:
|
305
|
+
dataset = dataset.select(selected_cols)
|
306
|
+
|
307
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
+
|
309
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
310
|
+
if SNOWML_SPROC_ENV in os.environ:
|
311
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
312
|
+
project=_PROJECT,
|
313
|
+
subproject=_SUBPROJECT,
|
314
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
|
315
|
+
api_calls=[Session.call],
|
316
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
317
|
+
)
|
318
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
|
+
pd_df.columns = dataset.columns
|
320
|
+
dataset = pd_df
|
321
|
+
|
322
|
+
model_trainer = ModelTrainerBuilder.build(
|
323
|
+
estimator=self._sklearn_object,
|
324
|
+
dataset=dataset,
|
325
|
+
input_cols=self.input_cols,
|
326
|
+
label_cols=self.label_cols,
|
327
|
+
sample_weight_col=self.sample_weight_col,
|
328
|
+
autogenerated=self._autogenerated,
|
329
|
+
subproject=_SUBPROJECT
|
330
|
+
)
|
331
|
+
self._sklearn_object = model_trainer.train()
|
301
332
|
self._is_fitted = True
|
302
333
|
self._get_model_signatures(dataset)
|
303
334
|
return self
|
304
335
|
|
305
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
306
|
-
session = dataset._session
|
307
|
-
assert session is not None # keep mypy happy
|
308
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
-
|
313
|
-
# Specify input columns so column pruning will be enforced
|
314
|
-
selected_cols = self._get_active_columns()
|
315
|
-
if len(selected_cols) > 0:
|
316
|
-
dataset = dataset.select(selected_cols)
|
317
|
-
|
318
|
-
estimator = self._sklearn_object
|
319
|
-
assert estimator is not None # Keep mypy happy
|
320
|
-
|
321
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
322
|
-
|
323
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
324
|
-
dataset,
|
325
|
-
session,
|
326
|
-
estimator,
|
327
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
328
|
-
self.input_cols,
|
329
|
-
self.label_cols,
|
330
|
-
self.sample_weight_col,
|
331
|
-
)
|
332
|
-
|
333
336
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
334
337
|
if self._drop_input_cols:
|
335
338
|
return []
|
@@ -517,11 +520,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
517
520
|
subproject=_SUBPROJECT,
|
518
521
|
custom_tags=dict([("autogen", True)]),
|
519
522
|
)
|
520
|
-
@telemetry.add_stmt_params_to_df(
|
521
|
-
project=_PROJECT,
|
522
|
-
subproject=_SUBPROJECT,
|
523
|
-
custom_tags=dict([("autogen", True)]),
|
524
|
-
)
|
525
523
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
526
524
|
"""Return labels (1 inlier, -1 outlier) of the samples
|
527
525
|
For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.predict]
|
@@ -575,11 +573,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
575
573
|
subproject=_SUBPROJECT,
|
576
574
|
custom_tags=dict([("autogen", True)]),
|
577
575
|
)
|
578
|
-
@telemetry.add_stmt_params_to_df(
|
579
|
-
project=_PROJECT,
|
580
|
-
subproject=_SUBPROJECT,
|
581
|
-
custom_tags=dict([("autogen", True)]),
|
582
|
-
)
|
583
576
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
584
577
|
"""Method not supported for this class.
|
585
578
|
|
@@ -638,7 +631,8 @@ class SGDOneClassSVM(BaseTransformer):
|
|
638
631
|
if False:
|
639
632
|
self.fit(dataset)
|
640
633
|
assert self._sklearn_object is not None
|
641
|
-
|
634
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
635
|
+
return labels
|
642
636
|
else:
|
643
637
|
raise NotImplementedError
|
644
638
|
|
@@ -674,6 +668,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
674
668
|
output_cols = []
|
675
669
|
|
676
670
|
# Make sure column names are valid snowflake identifiers.
|
671
|
+
assert output_cols is not None # Make MyPy happy
|
677
672
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
678
673
|
|
679
674
|
return rv
|
@@ -684,11 +679,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
684
679
|
subproject=_SUBPROJECT,
|
685
680
|
custom_tags=dict([("autogen", True)]),
|
686
681
|
)
|
687
|
-
@telemetry.add_stmt_params_to_df(
|
688
|
-
project=_PROJECT,
|
689
|
-
subproject=_SUBPROJECT,
|
690
|
-
custom_tags=dict([("autogen", True)]),
|
691
|
-
)
|
692
682
|
def predict_proba(
|
693
683
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
694
684
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -729,11 +719,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
729
719
|
subproject=_SUBPROJECT,
|
730
720
|
custom_tags=dict([("autogen", True)]),
|
731
721
|
)
|
732
|
-
@telemetry.add_stmt_params_to_df(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
722
|
def predict_log_proba(
|
738
723
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
739
724
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -770,16 +755,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
770
755
|
return output_df
|
771
756
|
|
772
757
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
773
|
-
@telemetry.send_api_usage_telemetry(
|
774
|
-
project=_PROJECT,
|
775
|
-
subproject=_SUBPROJECT,
|
776
|
-
custom_tags=dict([("autogen", True)]),
|
777
|
-
)
|
778
|
-
@telemetry.add_stmt_params_to_df(
|
779
|
-
project=_PROJECT,
|
780
|
-
subproject=_SUBPROJECT,
|
781
|
-
custom_tags=dict([("autogen", True)]),
|
782
|
-
)
|
783
758
|
def decision_function(
|
784
759
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
785
760
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -880,11 +855,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
880
855
|
subproject=_SUBPROJECT,
|
881
856
|
custom_tags=dict([("autogen", True)]),
|
882
857
|
)
|
883
|
-
@telemetry.add_stmt_params_to_df(
|
884
|
-
project=_PROJECT,
|
885
|
-
subproject=_SUBPROJECT,
|
886
|
-
custom_tags=dict([("autogen", True)]),
|
887
|
-
)
|
888
858
|
def kneighbors(
|
889
859
|
self,
|
890
860
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -944,9 +914,9 @@ class SGDOneClassSVM(BaseTransformer):
|
|
944
914
|
# For classifier, the type of predict is the same as the type of label
|
945
915
|
if self._sklearn_object._estimator_type == 'classifier':
|
946
916
|
# label columns is the desired type for output
|
947
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
917
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
948
918
|
# rename the output columns
|
949
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
919
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
950
920
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
951
921
|
([] if self._drop_input_cols else inputs)
|
952
922
|
+ outputs)
|