snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MLPClassifier(BaseTransformer):
|
57
58
|
r"""Multi-layer Perceptron classifier
|
58
59
|
For more details on this class, see [sklearn.neural_network.MLPClassifier]
|
@@ -60,6 +61,51 @@ class MLPClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
|
64
110
|
The ith element represents the number of neurons in the ith
|
65
111
|
hidden layer.
|
@@ -209,42 +255,6 @@ class MLPClassifier(BaseTransformer):
|
|
209
255
|
of iterations reaches max_iter, or this number of loss function calls.
|
210
256
|
Note that number of loss function calls will be greater than or equal
|
211
257
|
to the number of iterations for the `MLPClassifier`.
|
212
|
-
|
213
|
-
input_cols: Optional[Union[str, List[str]]]
|
214
|
-
A string or list of strings representing column names that contain features.
|
215
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
216
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
217
|
-
parameters are considered input columns.
|
218
|
-
|
219
|
-
label_cols: Optional[Union[str, List[str]]]
|
220
|
-
A string or list of strings representing column names that contain labels.
|
221
|
-
This is a required param for estimators, as there is no way to infer these
|
222
|
-
columns. If this parameter is not specified, then object is fitted without
|
223
|
-
labels (like a transformer).
|
224
|
-
|
225
|
-
output_cols: Optional[Union[str, List[str]]]
|
226
|
-
A string or list of strings representing column names that will store the
|
227
|
-
output of predict and transform operations. The length of output_cols must
|
228
|
-
match the expected number of output columns from the specific estimator or
|
229
|
-
transformer class used.
|
230
|
-
If this parameter is not specified, output column names are derived by
|
231
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
232
|
-
column names work for estimator's predict() method, but output_cols must
|
233
|
-
be set explicitly for transformers.
|
234
|
-
|
235
|
-
sample_weight_col: Optional[str]
|
236
|
-
A string representing the column name containing the sample weights.
|
237
|
-
This argument is only required when working with weighted datasets.
|
238
|
-
|
239
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
240
|
-
A string or a list of strings indicating column names to be excluded from any
|
241
|
-
operations (such as train, transform, or inference). These specified column(s)
|
242
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
243
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
244
|
-
columns, like index columns, during training or inference.
|
245
|
-
|
246
|
-
drop_input_cols: Optional[bool], default=False
|
247
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
248
258
|
"""
|
249
259
|
|
250
260
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -288,7 +298,7 @@ class MLPClassifier(BaseTransformer):
|
|
288
298
|
self.set_passthrough_cols(passthrough_cols)
|
289
299
|
self.set_drop_input_cols(drop_input_cols)
|
290
300
|
self.set_sample_weight_col(sample_weight_col)
|
291
|
-
deps = set(
|
301
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
292
302
|
|
293
303
|
self._deps = list(deps)
|
294
304
|
|
@@ -319,13 +329,14 @@ class MLPClassifier(BaseTransformer):
|
|
319
329
|
args=init_args,
|
320
330
|
klass=sklearn.neural_network.MLPClassifier
|
321
331
|
)
|
322
|
-
self._sklearn_object = sklearn.neural_network.MLPClassifier(
|
332
|
+
self._sklearn_object: Any = sklearn.neural_network.MLPClassifier(
|
323
333
|
**cleaned_up_init_args,
|
324
334
|
)
|
325
335
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
326
336
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
327
337
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
328
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
338
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
339
|
+
self._autogenerated = True
|
329
340
|
|
330
341
|
def _get_rand_id(self) -> str:
|
331
342
|
"""
|
@@ -381,54 +392,48 @@ class MLPClassifier(BaseTransformer):
|
|
381
392
|
self
|
382
393
|
"""
|
383
394
|
self._infer_input_output_cols(dataset)
|
384
|
-
if isinstance(dataset,
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
self.
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
395
|
+
if isinstance(dataset, DataFrame):
|
396
|
+
session = dataset._session
|
397
|
+
assert session is not None # keep mypy happy
|
398
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
399
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
400
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
401
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
402
|
+
|
403
|
+
# Specify input columns so column pruning will be enforced
|
404
|
+
selected_cols = self._get_active_columns()
|
405
|
+
if len(selected_cols) > 0:
|
406
|
+
dataset = dataset.select(selected_cols)
|
407
|
+
|
408
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
409
|
+
|
410
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
411
|
+
if SNOWML_SPROC_ENV in os.environ:
|
412
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
413
|
+
project=_PROJECT,
|
414
|
+
subproject=_SUBPROJECT,
|
415
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
|
416
|
+
api_calls=[Session.call],
|
417
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
418
|
+
)
|
419
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
420
|
+
pd_df.columns = dataset.columns
|
421
|
+
dataset = pd_df
|
422
|
+
|
423
|
+
model_trainer = ModelTrainerBuilder.build(
|
424
|
+
estimator=self._sklearn_object,
|
425
|
+
dataset=dataset,
|
426
|
+
input_cols=self.input_cols,
|
427
|
+
label_cols=self.label_cols,
|
428
|
+
sample_weight_col=self.sample_weight_col,
|
429
|
+
autogenerated=self._autogenerated,
|
430
|
+
subproject=_SUBPROJECT
|
431
|
+
)
|
432
|
+
self._sklearn_object = model_trainer.train()
|
400
433
|
self._is_fitted = True
|
401
434
|
self._get_model_signatures(dataset)
|
402
435
|
return self
|
403
436
|
|
404
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
405
|
-
session = dataset._session
|
406
|
-
assert session is not None # keep mypy happy
|
407
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
408
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
409
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
410
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
411
|
-
|
412
|
-
# Specify input columns so column pruning will be enforced
|
413
|
-
selected_cols = self._get_active_columns()
|
414
|
-
if len(selected_cols) > 0:
|
415
|
-
dataset = dataset.select(selected_cols)
|
416
|
-
|
417
|
-
estimator = self._sklearn_object
|
418
|
-
assert estimator is not None # Keep mypy happy
|
419
|
-
|
420
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
421
|
-
|
422
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
423
|
-
dataset,
|
424
|
-
session,
|
425
|
-
estimator,
|
426
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
427
|
-
self.input_cols,
|
428
|
-
self.label_cols,
|
429
|
-
self.sample_weight_col,
|
430
|
-
)
|
431
|
-
|
432
437
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
433
438
|
if self._drop_input_cols:
|
434
439
|
return []
|
@@ -616,11 +621,6 @@ class MLPClassifier(BaseTransformer):
|
|
616
621
|
subproject=_SUBPROJECT,
|
617
622
|
custom_tags=dict([("autogen", True)]),
|
618
623
|
)
|
619
|
-
@telemetry.add_stmt_params_to_df(
|
620
|
-
project=_PROJECT,
|
621
|
-
subproject=_SUBPROJECT,
|
622
|
-
custom_tags=dict([("autogen", True)]),
|
623
|
-
)
|
624
624
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
625
625
|
"""Predict using the multi-layer perceptron classifier
|
626
626
|
For more details on this function, see [sklearn.neural_network.MLPClassifier.predict]
|
@@ -674,11 +674,6 @@ class MLPClassifier(BaseTransformer):
|
|
674
674
|
subproject=_SUBPROJECT,
|
675
675
|
custom_tags=dict([("autogen", True)]),
|
676
676
|
)
|
677
|
-
@telemetry.add_stmt_params_to_df(
|
678
|
-
project=_PROJECT,
|
679
|
-
subproject=_SUBPROJECT,
|
680
|
-
custom_tags=dict([("autogen", True)]),
|
681
|
-
)
|
682
677
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
683
678
|
"""Method not supported for this class.
|
684
679
|
|
@@ -735,7 +730,8 @@ class MLPClassifier(BaseTransformer):
|
|
735
730
|
if False:
|
736
731
|
self.fit(dataset)
|
737
732
|
assert self._sklearn_object is not None
|
738
|
-
|
733
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
734
|
+
return labels
|
739
735
|
else:
|
740
736
|
raise NotImplementedError
|
741
737
|
|
@@ -771,6 +767,7 @@ class MLPClassifier(BaseTransformer):
|
|
771
767
|
output_cols = []
|
772
768
|
|
773
769
|
# Make sure column names are valid snowflake identifiers.
|
770
|
+
assert output_cols is not None # Make MyPy happy
|
774
771
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
775
772
|
|
776
773
|
return rv
|
@@ -781,11 +778,6 @@ class MLPClassifier(BaseTransformer):
|
|
781
778
|
subproject=_SUBPROJECT,
|
782
779
|
custom_tags=dict([("autogen", True)]),
|
783
780
|
)
|
784
|
-
@telemetry.add_stmt_params_to_df(
|
785
|
-
project=_PROJECT,
|
786
|
-
subproject=_SUBPROJECT,
|
787
|
-
custom_tags=dict([("autogen", True)]),
|
788
|
-
)
|
789
781
|
def predict_proba(
|
790
782
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
791
783
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -828,11 +820,6 @@ class MLPClassifier(BaseTransformer):
|
|
828
820
|
subproject=_SUBPROJECT,
|
829
821
|
custom_tags=dict([("autogen", True)]),
|
830
822
|
)
|
831
|
-
@telemetry.add_stmt_params_to_df(
|
832
|
-
project=_PROJECT,
|
833
|
-
subproject=_SUBPROJECT,
|
834
|
-
custom_tags=dict([("autogen", True)]),
|
835
|
-
)
|
836
823
|
def predict_log_proba(
|
837
824
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
838
825
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -871,16 +858,6 @@ class MLPClassifier(BaseTransformer):
|
|
871
858
|
return output_df
|
872
859
|
|
873
860
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
874
|
-
@telemetry.send_api_usage_telemetry(
|
875
|
-
project=_PROJECT,
|
876
|
-
subproject=_SUBPROJECT,
|
877
|
-
custom_tags=dict([("autogen", True)]),
|
878
|
-
)
|
879
|
-
@telemetry.add_stmt_params_to_df(
|
880
|
-
project=_PROJECT,
|
881
|
-
subproject=_SUBPROJECT,
|
882
|
-
custom_tags=dict([("autogen", True)]),
|
883
|
-
)
|
884
861
|
def decision_function(
|
885
862
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
886
863
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -981,11 +958,6 @@ class MLPClassifier(BaseTransformer):
|
|
981
958
|
subproject=_SUBPROJECT,
|
982
959
|
custom_tags=dict([("autogen", True)]),
|
983
960
|
)
|
984
|
-
@telemetry.add_stmt_params_to_df(
|
985
|
-
project=_PROJECT,
|
986
|
-
subproject=_SUBPROJECT,
|
987
|
-
custom_tags=dict([("autogen", True)]),
|
988
|
-
)
|
989
961
|
def kneighbors(
|
990
962
|
self,
|
991
963
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1045,9 +1017,9 @@ class MLPClassifier(BaseTransformer):
|
|
1045
1017
|
# For classifier, the type of predict is the same as the type of label
|
1046
1018
|
if self._sklearn_object._estimator_type == 'classifier':
|
1047
1019
|
# label columns is the desired type for output
|
1048
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1020
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1049
1021
|
# rename the output columns
|
1050
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1022
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1051
1023
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1052
1024
|
([] if self._drop_input_cols else inputs)
|
1053
1025
|
+ outputs)
|