snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MLPClassifier(BaseTransformer):
57
58
  r"""Multi-layer Perceptron classifier
58
59
  For more details on this class, see [sklearn.neural_network.MLPClassifier]
@@ -60,6 +61,51 @@ class MLPClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
64
110
  The ith element represents the number of neurons in the ith
65
111
  hidden layer.
@@ -209,42 +255,6 @@ class MLPClassifier(BaseTransformer):
209
255
  of iterations reaches max_iter, or this number of loss function calls.
210
256
  Note that number of loss function calls will be greater than or equal
211
257
  to the number of iterations for the `MLPClassifier`.
212
-
213
- input_cols: Optional[Union[str, List[str]]]
214
- A string or list of strings representing column names that contain features.
215
- If this parameter is not specified, all columns in the input DataFrame except
216
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
217
- parameters are considered input columns.
218
-
219
- label_cols: Optional[Union[str, List[str]]]
220
- A string or list of strings representing column names that contain labels.
221
- This is a required param for estimators, as there is no way to infer these
222
- columns. If this parameter is not specified, then object is fitted without
223
- labels (like a transformer).
224
-
225
- output_cols: Optional[Union[str, List[str]]]
226
- A string or list of strings representing column names that will store the
227
- output of predict and transform operations. The length of output_cols must
228
- match the expected number of output columns from the specific estimator or
229
- transformer class used.
230
- If this parameter is not specified, output column names are derived by
231
- adding an OUTPUT_ prefix to the label column names. These inferred output
232
- column names work for estimator's predict() method, but output_cols must
233
- be set explicitly for transformers.
234
-
235
- sample_weight_col: Optional[str]
236
- A string representing the column name containing the sample weights.
237
- This argument is only required when working with weighted datasets.
238
-
239
- passthrough_cols: Optional[Union[str, List[str]]]
240
- A string or a list of strings indicating column names to be excluded from any
241
- operations (such as train, transform, or inference). These specified column(s)
242
- will remain untouched throughout the process. This option is helpful in scenarios
243
- requiring automatic input_cols inference, but need to avoid using specific
244
- columns, like index columns, during training or inference.
245
-
246
- drop_input_cols: Optional[bool], default=False
247
- If set, the response of predict(), transform() methods will not contain input columns.
248
258
  """
249
259
 
250
260
  def __init__( # type: ignore[no-untyped-def]
@@ -288,7 +298,7 @@ class MLPClassifier(BaseTransformer):
288
298
  self.set_passthrough_cols(passthrough_cols)
289
299
  self.set_drop_input_cols(drop_input_cols)
290
300
  self.set_sample_weight_col(sample_weight_col)
291
- deps = set(SklearnWrapperProvider().dependencies)
301
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
292
302
 
293
303
  self._deps = list(deps)
294
304
 
@@ -319,13 +329,14 @@ class MLPClassifier(BaseTransformer):
319
329
  args=init_args,
320
330
  klass=sklearn.neural_network.MLPClassifier
321
331
  )
322
- self._sklearn_object = sklearn.neural_network.MLPClassifier(
332
+ self._sklearn_object: Any = sklearn.neural_network.MLPClassifier(
323
333
  **cleaned_up_init_args,
324
334
  )
325
335
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
326
336
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
327
337
  self._snowpark_cols: Optional[List[str]] = self.input_cols
328
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
338
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
339
+ self._autogenerated = True
329
340
 
330
341
  def _get_rand_id(self) -> str:
331
342
  """
@@ -381,54 +392,48 @@ class MLPClassifier(BaseTransformer):
381
392
  self
382
393
  """
383
394
  self._infer_input_output_cols(dataset)
384
- if isinstance(dataset, pd.DataFrame):
385
- assert self._sklearn_object is not None # keep mypy happy
386
- self._sklearn_object = self._handlers.fit_pandas(
387
- dataset,
388
- self._sklearn_object,
389
- self.input_cols,
390
- self.label_cols,
391
- self.sample_weight_col
392
- )
393
- elif isinstance(dataset, DataFrame):
394
- self._fit_snowpark(dataset)
395
- else:
396
- raise TypeError(
397
- f"Unexpected dataset type: {type(dataset)}."
398
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
399
- )
395
+ if isinstance(dataset, DataFrame):
396
+ session = dataset._session
397
+ assert session is not None # keep mypy happy
398
+ # Validate that key package version in user workspace are supported in snowflake conda channel
399
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
400
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
401
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
402
+
403
+ # Specify input columns so column pruning will be enforced
404
+ selected_cols = self._get_active_columns()
405
+ if len(selected_cols) > 0:
406
+ dataset = dataset.select(selected_cols)
407
+
408
+ self._snowpark_cols = dataset.select(self.input_cols).columns
409
+
410
+ # If we are already in a stored procedure, no need to kick off another one.
411
+ if SNOWML_SPROC_ENV in os.environ:
412
+ statement_params = telemetry.get_function_usage_statement_params(
413
+ project=_PROJECT,
414
+ subproject=_SUBPROJECT,
415
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
416
+ api_calls=[Session.call],
417
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
418
+ )
419
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
420
+ pd_df.columns = dataset.columns
421
+ dataset = pd_df
422
+
423
+ model_trainer = ModelTrainerBuilder.build(
424
+ estimator=self._sklearn_object,
425
+ dataset=dataset,
426
+ input_cols=self.input_cols,
427
+ label_cols=self.label_cols,
428
+ sample_weight_col=self.sample_weight_col,
429
+ autogenerated=self._autogenerated,
430
+ subproject=_SUBPROJECT
431
+ )
432
+ self._sklearn_object = model_trainer.train()
400
433
  self._is_fitted = True
401
434
  self._get_model_signatures(dataset)
402
435
  return self
403
436
 
404
- def _fit_snowpark(self, dataset: DataFrame) -> None:
405
- session = dataset._session
406
- assert session is not None # keep mypy happy
407
- # Validate that key package version in user workspace are supported in snowflake conda channel
408
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
409
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
410
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
411
-
412
- # Specify input columns so column pruning will be enforced
413
- selected_cols = self._get_active_columns()
414
- if len(selected_cols) > 0:
415
- dataset = dataset.select(selected_cols)
416
-
417
- estimator = self._sklearn_object
418
- assert estimator is not None # Keep mypy happy
419
-
420
- self._snowpark_cols = dataset.select(self.input_cols).columns
421
-
422
- self._sklearn_object = self._handlers.fit_snowpark(
423
- dataset,
424
- session,
425
- estimator,
426
- ["snowflake-snowpark-python"] + self._get_dependencies(),
427
- self.input_cols,
428
- self.label_cols,
429
- self.sample_weight_col,
430
- )
431
-
432
437
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
433
438
  if self._drop_input_cols:
434
439
  return []
@@ -616,11 +621,6 @@ class MLPClassifier(BaseTransformer):
616
621
  subproject=_SUBPROJECT,
617
622
  custom_tags=dict([("autogen", True)]),
618
623
  )
619
- @telemetry.add_stmt_params_to_df(
620
- project=_PROJECT,
621
- subproject=_SUBPROJECT,
622
- custom_tags=dict([("autogen", True)]),
623
- )
624
624
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
625
625
  """Predict using the multi-layer perceptron classifier
626
626
  For more details on this function, see [sklearn.neural_network.MLPClassifier.predict]
@@ -674,11 +674,6 @@ class MLPClassifier(BaseTransformer):
674
674
  subproject=_SUBPROJECT,
675
675
  custom_tags=dict([("autogen", True)]),
676
676
  )
677
- @telemetry.add_stmt_params_to_df(
678
- project=_PROJECT,
679
- subproject=_SUBPROJECT,
680
- custom_tags=dict([("autogen", True)]),
681
- )
682
677
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
683
678
  """Method not supported for this class.
684
679
 
@@ -735,7 +730,8 @@ class MLPClassifier(BaseTransformer):
735
730
  if False:
736
731
  self.fit(dataset)
737
732
  assert self._sklearn_object is not None
738
- return self._sklearn_object.labels_
733
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
734
+ return labels
739
735
  else:
740
736
  raise NotImplementedError
741
737
 
@@ -771,6 +767,7 @@ class MLPClassifier(BaseTransformer):
771
767
  output_cols = []
772
768
 
773
769
  # Make sure column names are valid snowflake identifiers.
770
+ assert output_cols is not None # Make MyPy happy
774
771
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
775
772
 
776
773
  return rv
@@ -781,11 +778,6 @@ class MLPClassifier(BaseTransformer):
781
778
  subproject=_SUBPROJECT,
782
779
  custom_tags=dict([("autogen", True)]),
783
780
  )
784
- @telemetry.add_stmt_params_to_df(
785
- project=_PROJECT,
786
- subproject=_SUBPROJECT,
787
- custom_tags=dict([("autogen", True)]),
788
- )
789
781
  def predict_proba(
790
782
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
791
783
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -828,11 +820,6 @@ class MLPClassifier(BaseTransformer):
828
820
  subproject=_SUBPROJECT,
829
821
  custom_tags=dict([("autogen", True)]),
830
822
  )
831
- @telemetry.add_stmt_params_to_df(
832
- project=_PROJECT,
833
- subproject=_SUBPROJECT,
834
- custom_tags=dict([("autogen", True)]),
835
- )
836
823
  def predict_log_proba(
837
824
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
838
825
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -871,16 +858,6 @@ class MLPClassifier(BaseTransformer):
871
858
  return output_df
872
859
 
873
860
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
874
- @telemetry.send_api_usage_telemetry(
875
- project=_PROJECT,
876
- subproject=_SUBPROJECT,
877
- custom_tags=dict([("autogen", True)]),
878
- )
879
- @telemetry.add_stmt_params_to_df(
880
- project=_PROJECT,
881
- subproject=_SUBPROJECT,
882
- custom_tags=dict([("autogen", True)]),
883
- )
884
861
  def decision_function(
885
862
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
886
863
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -981,11 +958,6 @@ class MLPClassifier(BaseTransformer):
981
958
  subproject=_SUBPROJECT,
982
959
  custom_tags=dict([("autogen", True)]),
983
960
  )
984
- @telemetry.add_stmt_params_to_df(
985
- project=_PROJECT,
986
- subproject=_SUBPROJECT,
987
- custom_tags=dict([("autogen", True)]),
988
- )
989
961
  def kneighbors(
990
962
  self,
991
963
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1045,9 +1017,9 @@ class MLPClassifier(BaseTransformer):
1045
1017
  # For classifier, the type of predict is the same as the type of label
1046
1018
  if self._sklearn_object._estimator_type == 'classifier':
1047
1019
  # label columns is the desired type for output
1048
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1020
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1049
1021
  # rename the output columns
1050
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1022
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1051
1023
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1052
1024
  ([] if self._drop_input_cols else inputs)
1053
1025
  + outputs)