snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultiTaskLassoCV(BaseTransformer):
|
57
58
|
r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
|
@@ -60,6 +61,51 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
eps: float, default=1e-3
|
64
110
|
Length of the path. ``eps=1e-3`` means that
|
65
111
|
``alpha_min / alpha_max = 1e-3``.
|
@@ -123,42 +169,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
123
169
|
rather than looping over features sequentially by default. This
|
124
170
|
(setting to 'random') often leads to significantly faster convergence
|
125
171
|
especially when tol is higher than 1e-4.
|
126
|
-
|
127
|
-
input_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that contain features.
|
129
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
130
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
131
|
-
parameters are considered input columns.
|
132
|
-
|
133
|
-
label_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that contain labels.
|
135
|
-
This is a required param for estimators, as there is no way to infer these
|
136
|
-
columns. If this parameter is not specified, then object is fitted without
|
137
|
-
labels (like a transformer).
|
138
|
-
|
139
|
-
output_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that will store the
|
141
|
-
output of predict and transform operations. The length of output_cols must
|
142
|
-
match the expected number of output columns from the specific estimator or
|
143
|
-
transformer class used.
|
144
|
-
If this parameter is not specified, output column names are derived by
|
145
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
146
|
-
column names work for estimator's predict() method, but output_cols must
|
147
|
-
be set explicitly for transformers.
|
148
|
-
|
149
|
-
sample_weight_col: Optional[str]
|
150
|
-
A string representing the column name containing the sample weights.
|
151
|
-
This argument is only required when working with weighted datasets.
|
152
|
-
|
153
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or a list of strings indicating column names to be excluded from any
|
155
|
-
operations (such as train, transform, or inference). These specified column(s)
|
156
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
157
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
158
|
-
columns, like index columns, during training or inference.
|
159
|
-
|
160
|
-
drop_input_cols: Optional[bool], default=False
|
161
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
162
172
|
"""
|
163
173
|
|
164
174
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -191,7 +201,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
191
201
|
self.set_passthrough_cols(passthrough_cols)
|
192
202
|
self.set_drop_input_cols(drop_input_cols)
|
193
203
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
204
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
205
|
|
196
206
|
self._deps = list(deps)
|
197
207
|
|
@@ -211,13 +221,14 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
211
221
|
args=init_args,
|
212
222
|
klass=sklearn.linear_model.MultiTaskLassoCV
|
213
223
|
)
|
214
|
-
self._sklearn_object = sklearn.linear_model.MultiTaskLassoCV(
|
224
|
+
self._sklearn_object: Any = sklearn.linear_model.MultiTaskLassoCV(
|
215
225
|
**cleaned_up_init_args,
|
216
226
|
)
|
217
227
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
218
228
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
219
229
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
220
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
230
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
231
|
+
self._autogenerated = True
|
221
232
|
|
222
233
|
def _get_rand_id(self) -> str:
|
223
234
|
"""
|
@@ -273,54 +284,48 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
273
284
|
self
|
274
285
|
"""
|
275
286
|
self._infer_input_output_cols(dataset)
|
276
|
-
if isinstance(dataset,
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
self.
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
287
|
+
if isinstance(dataset, DataFrame):
|
288
|
+
session = dataset._session
|
289
|
+
assert session is not None # keep mypy happy
|
290
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
291
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
292
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
293
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
294
|
+
|
295
|
+
# Specify input columns so column pruning will be enforced
|
296
|
+
selected_cols = self._get_active_columns()
|
297
|
+
if len(selected_cols) > 0:
|
298
|
+
dataset = dataset.select(selected_cols)
|
299
|
+
|
300
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
301
|
+
|
302
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
303
|
+
if SNOWML_SPROC_ENV in os.environ:
|
304
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
305
|
+
project=_PROJECT,
|
306
|
+
subproject=_SUBPROJECT,
|
307
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
|
308
|
+
api_calls=[Session.call],
|
309
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
310
|
+
)
|
311
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
312
|
+
pd_df.columns = dataset.columns
|
313
|
+
dataset = pd_df
|
314
|
+
|
315
|
+
model_trainer = ModelTrainerBuilder.build(
|
316
|
+
estimator=self._sklearn_object,
|
317
|
+
dataset=dataset,
|
318
|
+
input_cols=self.input_cols,
|
319
|
+
label_cols=self.label_cols,
|
320
|
+
sample_weight_col=self.sample_weight_col,
|
321
|
+
autogenerated=self._autogenerated,
|
322
|
+
subproject=_SUBPROJECT
|
323
|
+
)
|
324
|
+
self._sklearn_object = model_trainer.train()
|
292
325
|
self._is_fitted = True
|
293
326
|
self._get_model_signatures(dataset)
|
294
327
|
return self
|
295
328
|
|
296
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
297
|
-
session = dataset._session
|
298
|
-
assert session is not None # keep mypy happy
|
299
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
300
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
301
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
302
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
303
|
-
|
304
|
-
# Specify input columns so column pruning will be enforced
|
305
|
-
selected_cols = self._get_active_columns()
|
306
|
-
if len(selected_cols) > 0:
|
307
|
-
dataset = dataset.select(selected_cols)
|
308
|
-
|
309
|
-
estimator = self._sklearn_object
|
310
|
-
assert estimator is not None # Keep mypy happy
|
311
|
-
|
312
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
313
|
-
|
314
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
315
|
-
dataset,
|
316
|
-
session,
|
317
|
-
estimator,
|
318
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
319
|
-
self.input_cols,
|
320
|
-
self.label_cols,
|
321
|
-
self.sample_weight_col,
|
322
|
-
)
|
323
|
-
|
324
329
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
325
330
|
if self._drop_input_cols:
|
326
331
|
return []
|
@@ -508,11 +513,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
508
513
|
subproject=_SUBPROJECT,
|
509
514
|
custom_tags=dict([("autogen", True)]),
|
510
515
|
)
|
511
|
-
@telemetry.add_stmt_params_to_df(
|
512
|
-
project=_PROJECT,
|
513
|
-
subproject=_SUBPROJECT,
|
514
|
-
custom_tags=dict([("autogen", True)]),
|
515
|
-
)
|
516
516
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
517
517
|
"""Predict using the linear model
|
518
518
|
For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.predict]
|
@@ -566,11 +566,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
566
566
|
subproject=_SUBPROJECT,
|
567
567
|
custom_tags=dict([("autogen", True)]),
|
568
568
|
)
|
569
|
-
@telemetry.add_stmt_params_to_df(
|
570
|
-
project=_PROJECT,
|
571
|
-
subproject=_SUBPROJECT,
|
572
|
-
custom_tags=dict([("autogen", True)]),
|
573
|
-
)
|
574
569
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
575
570
|
"""Method not supported for this class.
|
576
571
|
|
@@ -627,7 +622,8 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
627
622
|
if False:
|
628
623
|
self.fit(dataset)
|
629
624
|
assert self._sklearn_object is not None
|
630
|
-
|
625
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
626
|
+
return labels
|
631
627
|
else:
|
632
628
|
raise NotImplementedError
|
633
629
|
|
@@ -663,6 +659,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
663
659
|
output_cols = []
|
664
660
|
|
665
661
|
# Make sure column names are valid snowflake identifiers.
|
662
|
+
assert output_cols is not None # Make MyPy happy
|
666
663
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
667
664
|
|
668
665
|
return rv
|
@@ -673,11 +670,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
673
670
|
subproject=_SUBPROJECT,
|
674
671
|
custom_tags=dict([("autogen", True)]),
|
675
672
|
)
|
676
|
-
@telemetry.add_stmt_params_to_df(
|
677
|
-
project=_PROJECT,
|
678
|
-
subproject=_SUBPROJECT,
|
679
|
-
custom_tags=dict([("autogen", True)]),
|
680
|
-
)
|
681
673
|
def predict_proba(
|
682
674
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
683
675
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -718,11 +710,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
718
710
|
subproject=_SUBPROJECT,
|
719
711
|
custom_tags=dict([("autogen", True)]),
|
720
712
|
)
|
721
|
-
@telemetry.add_stmt_params_to_df(
|
722
|
-
project=_PROJECT,
|
723
|
-
subproject=_SUBPROJECT,
|
724
|
-
custom_tags=dict([("autogen", True)]),
|
725
|
-
)
|
726
713
|
def predict_log_proba(
|
727
714
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
728
715
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -759,16 +746,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
759
746
|
return output_df
|
760
747
|
|
761
748
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
762
|
-
@telemetry.send_api_usage_telemetry(
|
763
|
-
project=_PROJECT,
|
764
|
-
subproject=_SUBPROJECT,
|
765
|
-
custom_tags=dict([("autogen", True)]),
|
766
|
-
)
|
767
|
-
@telemetry.add_stmt_params_to_df(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
749
|
def decision_function(
|
773
750
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
774
751
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -869,11 +846,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
869
846
|
subproject=_SUBPROJECT,
|
870
847
|
custom_tags=dict([("autogen", True)]),
|
871
848
|
)
|
872
|
-
@telemetry.add_stmt_params_to_df(
|
873
|
-
project=_PROJECT,
|
874
|
-
subproject=_SUBPROJECT,
|
875
|
-
custom_tags=dict([("autogen", True)]),
|
876
|
-
)
|
877
849
|
def kneighbors(
|
878
850
|
self,
|
879
851
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -933,9 +905,9 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
933
905
|
# For classifier, the type of predict is the same as the type of label
|
934
906
|
if self._sklearn_object._estimator_type == 'classifier':
|
935
907
|
# label columns is the desired type for output
|
936
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
908
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
937
909
|
# rename the output columns
|
938
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
910
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
939
911
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
940
912
|
([] if self._drop_input_cols else inputs)
|
941
913
|
+ outputs)
|