snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultiTaskLassoCV(BaseTransformer):
57
58
  r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
58
59
  For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
@@ -60,6 +61,51 @@ class MultiTaskLassoCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  eps: float, default=1e-3
64
110
  Length of the path. ``eps=1e-3`` means that
65
111
  ``alpha_min / alpha_max = 1e-3``.
@@ -123,42 +169,6 @@ class MultiTaskLassoCV(BaseTransformer):
123
169
  rather than looping over features sequentially by default. This
124
170
  (setting to 'random') often leads to significantly faster convergence
125
171
  especially when tol is higher than 1e-4.
126
-
127
- input_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that contain features.
129
- If this parameter is not specified, all columns in the input DataFrame except
130
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
131
- parameters are considered input columns.
132
-
133
- label_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that contain labels.
135
- This is a required param for estimators, as there is no way to infer these
136
- columns. If this parameter is not specified, then object is fitted without
137
- labels (like a transformer).
138
-
139
- output_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that will store the
141
- output of predict and transform operations. The length of output_cols must
142
- match the expected number of output columns from the specific estimator or
143
- transformer class used.
144
- If this parameter is not specified, output column names are derived by
145
- adding an OUTPUT_ prefix to the label column names. These inferred output
146
- column names work for estimator's predict() method, but output_cols must
147
- be set explicitly for transformers.
148
-
149
- sample_weight_col: Optional[str]
150
- A string representing the column name containing the sample weights.
151
- This argument is only required when working with weighted datasets.
152
-
153
- passthrough_cols: Optional[Union[str, List[str]]]
154
- A string or a list of strings indicating column names to be excluded from any
155
- operations (such as train, transform, or inference). These specified column(s)
156
- will remain untouched throughout the process. This option is helpful in scenarios
157
- requiring automatic input_cols inference, but need to avoid using specific
158
- columns, like index columns, during training or inference.
159
-
160
- drop_input_cols: Optional[bool], default=False
161
- If set, the response of predict(), transform() methods will not contain input columns.
162
172
  """
163
173
 
164
174
  def __init__( # type: ignore[no-untyped-def]
@@ -191,7 +201,7 @@ class MultiTaskLassoCV(BaseTransformer):
191
201
  self.set_passthrough_cols(passthrough_cols)
192
202
  self.set_drop_input_cols(drop_input_cols)
193
203
  self.set_sample_weight_col(sample_weight_col)
194
- deps = set(SklearnWrapperProvider().dependencies)
204
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
195
205
 
196
206
  self._deps = list(deps)
197
207
 
@@ -211,13 +221,14 @@ class MultiTaskLassoCV(BaseTransformer):
211
221
  args=init_args,
212
222
  klass=sklearn.linear_model.MultiTaskLassoCV
213
223
  )
214
- self._sklearn_object = sklearn.linear_model.MultiTaskLassoCV(
224
+ self._sklearn_object: Any = sklearn.linear_model.MultiTaskLassoCV(
215
225
  **cleaned_up_init_args,
216
226
  )
217
227
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
218
228
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
219
229
  self._snowpark_cols: Optional[List[str]] = self.input_cols
220
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
230
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
231
+ self._autogenerated = True
221
232
 
222
233
  def _get_rand_id(self) -> str:
223
234
  """
@@ -273,54 +284,48 @@ class MultiTaskLassoCV(BaseTransformer):
273
284
  self
274
285
  """
275
286
  self._infer_input_output_cols(dataset)
276
- if isinstance(dataset, pd.DataFrame):
277
- assert self._sklearn_object is not None # keep mypy happy
278
- self._sklearn_object = self._handlers.fit_pandas(
279
- dataset,
280
- self._sklearn_object,
281
- self.input_cols,
282
- self.label_cols,
283
- self.sample_weight_col
284
- )
285
- elif isinstance(dataset, DataFrame):
286
- self._fit_snowpark(dataset)
287
- else:
288
- raise TypeError(
289
- f"Unexpected dataset type: {type(dataset)}."
290
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
291
- )
287
+ if isinstance(dataset, DataFrame):
288
+ session = dataset._session
289
+ assert session is not None # keep mypy happy
290
+ # Validate that key package version in user workspace are supported in snowflake conda channel
291
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
292
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
293
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
294
+
295
+ # Specify input columns so column pruning will be enforced
296
+ selected_cols = self._get_active_columns()
297
+ if len(selected_cols) > 0:
298
+ dataset = dataset.select(selected_cols)
299
+
300
+ self._snowpark_cols = dataset.select(self.input_cols).columns
301
+
302
+ # If we are already in a stored procedure, no need to kick off another one.
303
+ if SNOWML_SPROC_ENV in os.environ:
304
+ statement_params = telemetry.get_function_usage_statement_params(
305
+ project=_PROJECT,
306
+ subproject=_SUBPROJECT,
307
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
308
+ api_calls=[Session.call],
309
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
310
+ )
311
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
312
+ pd_df.columns = dataset.columns
313
+ dataset = pd_df
314
+
315
+ model_trainer = ModelTrainerBuilder.build(
316
+ estimator=self._sklearn_object,
317
+ dataset=dataset,
318
+ input_cols=self.input_cols,
319
+ label_cols=self.label_cols,
320
+ sample_weight_col=self.sample_weight_col,
321
+ autogenerated=self._autogenerated,
322
+ subproject=_SUBPROJECT
323
+ )
324
+ self._sklearn_object = model_trainer.train()
292
325
  self._is_fitted = True
293
326
  self._get_model_signatures(dataset)
294
327
  return self
295
328
 
296
- def _fit_snowpark(self, dataset: DataFrame) -> None:
297
- session = dataset._session
298
- assert session is not None # keep mypy happy
299
- # Validate that key package version in user workspace are supported in snowflake conda channel
300
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
301
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
302
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
303
-
304
- # Specify input columns so column pruning will be enforced
305
- selected_cols = self._get_active_columns()
306
- if len(selected_cols) > 0:
307
- dataset = dataset.select(selected_cols)
308
-
309
- estimator = self._sklearn_object
310
- assert estimator is not None # Keep mypy happy
311
-
312
- self._snowpark_cols = dataset.select(self.input_cols).columns
313
-
314
- self._sklearn_object = self._handlers.fit_snowpark(
315
- dataset,
316
- session,
317
- estimator,
318
- ["snowflake-snowpark-python"] + self._get_dependencies(),
319
- self.input_cols,
320
- self.label_cols,
321
- self.sample_weight_col,
322
- )
323
-
324
329
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
325
330
  if self._drop_input_cols:
326
331
  return []
@@ -508,11 +513,6 @@ class MultiTaskLassoCV(BaseTransformer):
508
513
  subproject=_SUBPROJECT,
509
514
  custom_tags=dict([("autogen", True)]),
510
515
  )
511
- @telemetry.add_stmt_params_to_df(
512
- project=_PROJECT,
513
- subproject=_SUBPROJECT,
514
- custom_tags=dict([("autogen", True)]),
515
- )
516
516
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
517
517
  """Predict using the linear model
518
518
  For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.predict]
@@ -566,11 +566,6 @@ class MultiTaskLassoCV(BaseTransformer):
566
566
  subproject=_SUBPROJECT,
567
567
  custom_tags=dict([("autogen", True)]),
568
568
  )
569
- @telemetry.add_stmt_params_to_df(
570
- project=_PROJECT,
571
- subproject=_SUBPROJECT,
572
- custom_tags=dict([("autogen", True)]),
573
- )
574
569
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
575
570
  """Method not supported for this class.
576
571
 
@@ -627,7 +622,8 @@ class MultiTaskLassoCV(BaseTransformer):
627
622
  if False:
628
623
  self.fit(dataset)
629
624
  assert self._sklearn_object is not None
630
- return self._sklearn_object.labels_
625
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
626
+ return labels
631
627
  else:
632
628
  raise NotImplementedError
633
629
 
@@ -663,6 +659,7 @@ class MultiTaskLassoCV(BaseTransformer):
663
659
  output_cols = []
664
660
 
665
661
  # Make sure column names are valid snowflake identifiers.
662
+ assert output_cols is not None # Make MyPy happy
666
663
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
667
664
 
668
665
  return rv
@@ -673,11 +670,6 @@ class MultiTaskLassoCV(BaseTransformer):
673
670
  subproject=_SUBPROJECT,
674
671
  custom_tags=dict([("autogen", True)]),
675
672
  )
676
- @telemetry.add_stmt_params_to_df(
677
- project=_PROJECT,
678
- subproject=_SUBPROJECT,
679
- custom_tags=dict([("autogen", True)]),
680
- )
681
673
  def predict_proba(
682
674
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
683
675
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -718,11 +710,6 @@ class MultiTaskLassoCV(BaseTransformer):
718
710
  subproject=_SUBPROJECT,
719
711
  custom_tags=dict([("autogen", True)]),
720
712
  )
721
- @telemetry.add_stmt_params_to_df(
722
- project=_PROJECT,
723
- subproject=_SUBPROJECT,
724
- custom_tags=dict([("autogen", True)]),
725
- )
726
713
  def predict_log_proba(
727
714
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
728
715
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -759,16 +746,6 @@ class MultiTaskLassoCV(BaseTransformer):
759
746
  return output_df
760
747
 
761
748
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
762
- @telemetry.send_api_usage_telemetry(
763
- project=_PROJECT,
764
- subproject=_SUBPROJECT,
765
- custom_tags=dict([("autogen", True)]),
766
- )
767
- @telemetry.add_stmt_params_to_df(
768
- project=_PROJECT,
769
- subproject=_SUBPROJECT,
770
- custom_tags=dict([("autogen", True)]),
771
- )
772
749
  def decision_function(
773
750
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
774
751
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -869,11 +846,6 @@ class MultiTaskLassoCV(BaseTransformer):
869
846
  subproject=_SUBPROJECT,
870
847
  custom_tags=dict([("autogen", True)]),
871
848
  )
872
- @telemetry.add_stmt_params_to_df(
873
- project=_PROJECT,
874
- subproject=_SUBPROJECT,
875
- custom_tags=dict([("autogen", True)]),
876
- )
877
849
  def kneighbors(
878
850
  self,
879
851
  dataset: Union[DataFrame, pd.DataFrame],
@@ -933,9 +905,9 @@ class MultiTaskLassoCV(BaseTransformer):
933
905
  # For classifier, the type of predict is the same as the type of label
934
906
  if self._sklearn_object._estimator_type == 'classifier':
935
907
  # label columns is the desired type for output
936
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
908
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
937
909
  # rename the output columns
938
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
910
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
939
911
  self._model_signature_dict["predict"] = ModelSignature(inputs,
940
912
  ([] if self._drop_input_cols else inputs)
941
913
  + outputs)