snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RandomForestRegressor(BaseTransformer):
57
58
  r"""A random forest regressor
58
59
  For more details on this class, see [sklearn.ensemble.RandomForestRegressor]
@@ -60,6 +61,51 @@ class RandomForestRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -188,42 +234,6 @@ class RandomForestRegressor(BaseTransformer):
188
234
  - If int, then draw `max_samples` samples.
189
235
  - If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
190
236
  `max_samples` should be in the interval `(0.0, 1.0]`.
191
-
192
- input_cols: Optional[Union[str, List[str]]]
193
- A string or list of strings representing column names that contain features.
194
- If this parameter is not specified, all columns in the input DataFrame except
195
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
196
- parameters are considered input columns.
197
-
198
- label_cols: Optional[Union[str, List[str]]]
199
- A string or list of strings representing column names that contain labels.
200
- This is a required param for estimators, as there is no way to infer these
201
- columns. If this parameter is not specified, then object is fitted without
202
- labels (like a transformer).
203
-
204
- output_cols: Optional[Union[str, List[str]]]
205
- A string or list of strings representing column names that will store the
206
- output of predict and transform operations. The length of output_cols must
207
- match the expected number of output columns from the specific estimator or
208
- transformer class used.
209
- If this parameter is not specified, output column names are derived by
210
- adding an OUTPUT_ prefix to the label column names. These inferred output
211
- column names work for estimator's predict() method, but output_cols must
212
- be set explicitly for transformers.
213
-
214
- sample_weight_col: Optional[str]
215
- A string representing the column name containing the sample weights.
216
- This argument is only required when working with weighted datasets.
217
-
218
- passthrough_cols: Optional[Union[str, List[str]]]
219
- A string or a list of strings indicating column names to be excluded from any
220
- operations (such as train, transform, or inference). These specified column(s)
221
- will remain untouched throughout the process. This option is helpful in scenarios
222
- requiring automatic input_cols inference, but need to avoid using specific
223
- columns, like index columns, during training or inference.
224
-
225
- drop_input_cols: Optional[bool], default=False
226
- If set, the response of predict(), transform() methods will not contain input columns.
227
237
  """
228
238
 
229
239
  def __init__( # type: ignore[no-untyped-def]
@@ -261,7 +271,7 @@ class RandomForestRegressor(BaseTransformer):
261
271
  self.set_passthrough_cols(passthrough_cols)
262
272
  self.set_drop_input_cols(drop_input_cols)
263
273
  self.set_sample_weight_col(sample_weight_col)
264
- deps = set(SklearnWrapperProvider().dependencies)
274
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
265
275
 
266
276
  self._deps = list(deps)
267
277
 
@@ -286,13 +296,14 @@ class RandomForestRegressor(BaseTransformer):
286
296
  args=init_args,
287
297
  klass=sklearn.ensemble.RandomForestRegressor
288
298
  )
289
- self._sklearn_object = sklearn.ensemble.RandomForestRegressor(
299
+ self._sklearn_object: Any = sklearn.ensemble.RandomForestRegressor(
290
300
  **cleaned_up_init_args,
291
301
  )
292
302
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
293
303
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
294
304
  self._snowpark_cols: Optional[List[str]] = self.input_cols
295
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
305
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
306
+ self._autogenerated = True
296
307
 
297
308
  def _get_rand_id(self) -> str:
298
309
  """
@@ -348,54 +359,48 @@ class RandomForestRegressor(BaseTransformer):
348
359
  self
349
360
  """
350
361
  self._infer_input_output_cols(dataset)
351
- if isinstance(dataset, pd.DataFrame):
352
- assert self._sklearn_object is not None # keep mypy happy
353
- self._sklearn_object = self._handlers.fit_pandas(
354
- dataset,
355
- self._sklearn_object,
356
- self.input_cols,
357
- self.label_cols,
358
- self.sample_weight_col
359
- )
360
- elif isinstance(dataset, DataFrame):
361
- self._fit_snowpark(dataset)
362
- else:
363
- raise TypeError(
364
- f"Unexpected dataset type: {type(dataset)}."
365
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
366
- )
362
+ if isinstance(dataset, DataFrame):
363
+ session = dataset._session
364
+ assert session is not None # keep mypy happy
365
+ # Validate that key package version in user workspace are supported in snowflake conda channel
366
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
367
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
368
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
369
+
370
+ # Specify input columns so column pruning will be enforced
371
+ selected_cols = self._get_active_columns()
372
+ if len(selected_cols) > 0:
373
+ dataset = dataset.select(selected_cols)
374
+
375
+ self._snowpark_cols = dataset.select(self.input_cols).columns
376
+
377
+ # If we are already in a stored procedure, no need to kick off another one.
378
+ if SNOWML_SPROC_ENV in os.environ:
379
+ statement_params = telemetry.get_function_usage_statement_params(
380
+ project=_PROJECT,
381
+ subproject=_SUBPROJECT,
382
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestRegressor.__class__.__name__),
383
+ api_calls=[Session.call],
384
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
385
+ )
386
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
387
+ pd_df.columns = dataset.columns
388
+ dataset = pd_df
389
+
390
+ model_trainer = ModelTrainerBuilder.build(
391
+ estimator=self._sklearn_object,
392
+ dataset=dataset,
393
+ input_cols=self.input_cols,
394
+ label_cols=self.label_cols,
395
+ sample_weight_col=self.sample_weight_col,
396
+ autogenerated=self._autogenerated,
397
+ subproject=_SUBPROJECT
398
+ )
399
+ self._sklearn_object = model_trainer.train()
367
400
  self._is_fitted = True
368
401
  self._get_model_signatures(dataset)
369
402
  return self
370
403
 
371
- def _fit_snowpark(self, dataset: DataFrame) -> None:
372
- session = dataset._session
373
- assert session is not None # keep mypy happy
374
- # Validate that key package version in user workspace are supported in snowflake conda channel
375
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
376
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
378
-
379
- # Specify input columns so column pruning will be enforced
380
- selected_cols = self._get_active_columns()
381
- if len(selected_cols) > 0:
382
- dataset = dataset.select(selected_cols)
383
-
384
- estimator = self._sklearn_object
385
- assert estimator is not None # Keep mypy happy
386
-
387
- self._snowpark_cols = dataset.select(self.input_cols).columns
388
-
389
- self._sklearn_object = self._handlers.fit_snowpark(
390
- dataset,
391
- session,
392
- estimator,
393
- ["snowflake-snowpark-python"] + self._get_dependencies(),
394
- self.input_cols,
395
- self.label_cols,
396
- self.sample_weight_col,
397
- )
398
-
399
404
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
400
405
  if self._drop_input_cols:
401
406
  return []
@@ -583,11 +588,6 @@ class RandomForestRegressor(BaseTransformer):
583
588
  subproject=_SUBPROJECT,
584
589
  custom_tags=dict([("autogen", True)]),
585
590
  )
586
- @telemetry.add_stmt_params_to_df(
587
- project=_PROJECT,
588
- subproject=_SUBPROJECT,
589
- custom_tags=dict([("autogen", True)]),
590
- )
591
591
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
592
592
  """Predict regression target for X
593
593
  For more details on this function, see [sklearn.ensemble.RandomForestRegressor.predict]
@@ -641,11 +641,6 @@ class RandomForestRegressor(BaseTransformer):
641
641
  subproject=_SUBPROJECT,
642
642
  custom_tags=dict([("autogen", True)]),
643
643
  )
644
- @telemetry.add_stmt_params_to_df(
645
- project=_PROJECT,
646
- subproject=_SUBPROJECT,
647
- custom_tags=dict([("autogen", True)]),
648
- )
649
644
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
650
645
  """Method not supported for this class.
651
646
 
@@ -702,7 +697,8 @@ class RandomForestRegressor(BaseTransformer):
702
697
  if False:
703
698
  self.fit(dataset)
704
699
  assert self._sklearn_object is not None
705
- return self._sklearn_object.labels_
700
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
701
+ return labels
706
702
  else:
707
703
  raise NotImplementedError
708
704
 
@@ -738,6 +734,7 @@ class RandomForestRegressor(BaseTransformer):
738
734
  output_cols = []
739
735
 
740
736
  # Make sure column names are valid snowflake identifiers.
737
+ assert output_cols is not None # Make MyPy happy
741
738
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
742
739
 
743
740
  return rv
@@ -748,11 +745,6 @@ class RandomForestRegressor(BaseTransformer):
748
745
  subproject=_SUBPROJECT,
749
746
  custom_tags=dict([("autogen", True)]),
750
747
  )
751
- @telemetry.add_stmt_params_to_df(
752
- project=_PROJECT,
753
- subproject=_SUBPROJECT,
754
- custom_tags=dict([("autogen", True)]),
755
- )
756
748
  def predict_proba(
757
749
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
758
750
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -793,11 +785,6 @@ class RandomForestRegressor(BaseTransformer):
793
785
  subproject=_SUBPROJECT,
794
786
  custom_tags=dict([("autogen", True)]),
795
787
  )
796
- @telemetry.add_stmt_params_to_df(
797
- project=_PROJECT,
798
- subproject=_SUBPROJECT,
799
- custom_tags=dict([("autogen", True)]),
800
- )
801
788
  def predict_log_proba(
802
789
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
803
790
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -834,16 +821,6 @@ class RandomForestRegressor(BaseTransformer):
834
821
  return output_df
835
822
 
836
823
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
837
- @telemetry.send_api_usage_telemetry(
838
- project=_PROJECT,
839
- subproject=_SUBPROJECT,
840
- custom_tags=dict([("autogen", True)]),
841
- )
842
- @telemetry.add_stmt_params_to_df(
843
- project=_PROJECT,
844
- subproject=_SUBPROJECT,
845
- custom_tags=dict([("autogen", True)]),
846
- )
847
824
  def decision_function(
848
825
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
849
826
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -944,11 +921,6 @@ class RandomForestRegressor(BaseTransformer):
944
921
  subproject=_SUBPROJECT,
945
922
  custom_tags=dict([("autogen", True)]),
946
923
  )
947
- @telemetry.add_stmt_params_to_df(
948
- project=_PROJECT,
949
- subproject=_SUBPROJECT,
950
- custom_tags=dict([("autogen", True)]),
951
- )
952
924
  def kneighbors(
953
925
  self,
954
926
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1008,9 +980,9 @@ class RandomForestRegressor(BaseTransformer):
1008
980
  # For classifier, the type of predict is the same as the type of label
1009
981
  if self._sklearn_object._estimator_type == 'classifier':
1010
982
  # label columns is the desired type for output
1011
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
983
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1012
984
  # rename the output columns
1013
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
985
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1014
986
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
987
  ([] if self._drop_input_cols else inputs)
1016
988
  + outputs)