snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ColumnTransformer(BaseTransformer):
57
58
  r"""Applies transformers to columns of an array or pandas DataFrame
58
59
  For more details on this class, see [sklearn.compose.ColumnTransformer]
@@ -60,6 +61,49 @@ class ColumnTransformer(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  transformers: list of tuples
64
108
  List of (name, transformer, columns) tuples specifying the
65
109
  transformer objects to be applied to subsets of the data.
@@ -126,42 +170,6 @@ class ColumnTransformer(BaseTransformer):
126
170
  with the name of the transformer that generated that feature.
127
171
  If False, :meth:`get_feature_names_out` will not prefix any feature
128
172
  names and will error if feature names are not unique.
129
-
130
- input_cols: Optional[Union[str, List[str]]]
131
- A string or list of strings representing column names that contain features.
132
- If this parameter is not specified, all columns in the input DataFrame except
133
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
134
- parameters are considered input columns.
135
-
136
- label_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain labels.
138
- This is a required param for estimators, as there is no way to infer these
139
- columns. If this parameter is not specified, then object is fitted without
140
- labels (like a transformer).
141
-
142
- output_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that will store the
144
- output of predict and transform operations. The length of output_cols must
145
- match the expected number of output columns from the specific estimator or
146
- transformer class used.
147
- If this parameter is not specified, output column names are derived by
148
- adding an OUTPUT_ prefix to the label column names. These inferred output
149
- column names work for estimator's predict() method, but output_cols must
150
- be set explicitly for transformers.
151
-
152
- sample_weight_col: Optional[str]
153
- A string representing the column name containing the sample weights.
154
- This argument is only required when working with weighted datasets.
155
-
156
- passthrough_cols: Optional[Union[str, List[str]]]
157
- A string or a list of strings indicating column names to be excluded from any
158
- operations (such as train, transform, or inference). These specified column(s)
159
- will remain untouched throughout the process. This option is helpful in scenarios
160
- requiring automatic input_cols inference, but need to avoid using specific
161
- columns, like index columns, during training or inference.
162
-
163
- drop_input_cols: Optional[bool], default=False
164
- If set, the response of predict(), transform() methods will not contain input columns.
165
173
  """
166
174
 
167
175
  def __init__( # type: ignore[no-untyped-def]
@@ -189,7 +197,7 @@ class ColumnTransformer(BaseTransformer):
189
197
  self.set_passthrough_cols(passthrough_cols)
190
198
  self.set_drop_input_cols(drop_input_cols)
191
199
  self.set_sample_weight_col(sample_weight_col)
192
- deps = set(SklearnWrapperProvider().dependencies)
200
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
193
201
  deps = deps | gather_dependencies(transformers)
194
202
  self._deps = list(deps)
195
203
  transformers = transform_snowml_obj_to_sklearn_obj(transformers)
@@ -204,13 +212,14 @@ class ColumnTransformer(BaseTransformer):
204
212
  args=init_args,
205
213
  klass=sklearn.compose.ColumnTransformer
206
214
  )
207
- self._sklearn_object = sklearn.compose.ColumnTransformer(
215
+ self._sklearn_object: Any = sklearn.compose.ColumnTransformer(
208
216
  **cleaned_up_init_args,
209
217
  )
210
218
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
211
219
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
212
220
  self._snowpark_cols: Optional[List[str]] = self.input_cols
213
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
221
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
222
+ self._autogenerated = True
214
223
 
215
224
  def _get_rand_id(self) -> str:
216
225
  """
@@ -266,54 +275,48 @@ class ColumnTransformer(BaseTransformer):
266
275
  self
267
276
  """
268
277
  self._infer_input_output_cols(dataset)
269
- if isinstance(dataset, pd.DataFrame):
270
- assert self._sklearn_object is not None # keep mypy happy
271
- self._sklearn_object = self._handlers.fit_pandas(
272
- dataset,
273
- self._sklearn_object,
274
- self.input_cols,
275
- self.label_cols,
276
- self.sample_weight_col
277
- )
278
- elif isinstance(dataset, DataFrame):
279
- self._fit_snowpark(dataset)
280
- else:
281
- raise TypeError(
282
- f"Unexpected dataset type: {type(dataset)}."
283
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
284
- )
278
+ if isinstance(dataset, DataFrame):
279
+ session = dataset._session
280
+ assert session is not None # keep mypy happy
281
+ # Validate that key package version in user workspace are supported in snowflake conda channel
282
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
283
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
284
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
285
+
286
+ # Specify input columns so column pruning will be enforced
287
+ selected_cols = self._get_active_columns()
288
+ if len(selected_cols) > 0:
289
+ dataset = dataset.select(selected_cols)
290
+
291
+ self._snowpark_cols = dataset.select(self.input_cols).columns
292
+
293
+ # If we are already in a stored procedure, no need to kick off another one.
294
+ if SNOWML_SPROC_ENV in os.environ:
295
+ statement_params = telemetry.get_function_usage_statement_params(
296
+ project=_PROJECT,
297
+ subproject=_SUBPROJECT,
298
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ColumnTransformer.__class__.__name__),
299
+ api_calls=[Session.call],
300
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
+ )
302
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
303
+ pd_df.columns = dataset.columns
304
+ dataset = pd_df
305
+
306
+ model_trainer = ModelTrainerBuilder.build(
307
+ estimator=self._sklearn_object,
308
+ dataset=dataset,
309
+ input_cols=self.input_cols,
310
+ label_cols=self.label_cols,
311
+ sample_weight_col=self.sample_weight_col,
312
+ autogenerated=self._autogenerated,
313
+ subproject=_SUBPROJECT
314
+ )
315
+ self._sklearn_object = model_trainer.train()
285
316
  self._is_fitted = True
286
317
  self._get_model_signatures(dataset)
287
318
  return self
288
319
 
289
- def _fit_snowpark(self, dataset: DataFrame) -> None:
290
- session = dataset._session
291
- assert session is not None # keep mypy happy
292
- # Validate that key package version in user workspace are supported in snowflake conda channel
293
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
294
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
295
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
296
-
297
- # Specify input columns so column pruning will be enforced
298
- selected_cols = self._get_active_columns()
299
- if len(selected_cols) > 0:
300
- dataset = dataset.select(selected_cols)
301
-
302
- estimator = self._sklearn_object
303
- assert estimator is not None # Keep mypy happy
304
-
305
- self._snowpark_cols = dataset.select(self.input_cols).columns
306
-
307
- self._sklearn_object = self._handlers.fit_snowpark(
308
- dataset,
309
- session,
310
- estimator,
311
- ["snowflake-snowpark-python"] + self._get_dependencies(),
312
- self.input_cols,
313
- self.label_cols,
314
- self.sample_weight_col,
315
- )
316
-
317
320
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
318
321
  if self._drop_input_cols:
319
322
  return []
@@ -501,11 +504,6 @@ class ColumnTransformer(BaseTransformer):
501
504
  subproject=_SUBPROJECT,
502
505
  custom_tags=dict([("autogen", True)]),
503
506
  )
504
- @telemetry.add_stmt_params_to_df(
505
- project=_PROJECT,
506
- subproject=_SUBPROJECT,
507
- custom_tags=dict([("autogen", True)]),
508
- )
509
507
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
510
508
  """Method not supported for this class.
511
509
 
@@ -557,11 +555,6 @@ class ColumnTransformer(BaseTransformer):
557
555
  subproject=_SUBPROJECT,
558
556
  custom_tags=dict([("autogen", True)]),
559
557
  )
560
- @telemetry.add_stmt_params_to_df(
561
- project=_PROJECT,
562
- subproject=_SUBPROJECT,
563
- custom_tags=dict([("autogen", True)]),
564
- )
565
558
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
566
559
  """Transform X separately by each transformer, concatenate results
567
560
  For more details on this function, see [sklearn.compose.ColumnTransformer.transform]
@@ -620,7 +613,8 @@ class ColumnTransformer(BaseTransformer):
620
613
  if False:
621
614
  self.fit(dataset)
622
615
  assert self._sklearn_object is not None
623
- return self._sklearn_object.labels_
616
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
617
+ return labels
624
618
  else:
625
619
  raise NotImplementedError
626
620
 
@@ -656,6 +650,7 @@ class ColumnTransformer(BaseTransformer):
656
650
  output_cols = []
657
651
 
658
652
  # Make sure column names are valid snowflake identifiers.
653
+ assert output_cols is not None # Make MyPy happy
659
654
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
660
655
 
661
656
  return rv
@@ -666,11 +661,6 @@ class ColumnTransformer(BaseTransformer):
666
661
  subproject=_SUBPROJECT,
667
662
  custom_tags=dict([("autogen", True)]),
668
663
  )
669
- @telemetry.add_stmt_params_to_df(
670
- project=_PROJECT,
671
- subproject=_SUBPROJECT,
672
- custom_tags=dict([("autogen", True)]),
673
- )
674
664
  def predict_proba(
675
665
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
676
666
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -711,11 +701,6 @@ class ColumnTransformer(BaseTransformer):
711
701
  subproject=_SUBPROJECT,
712
702
  custom_tags=dict([("autogen", True)]),
713
703
  )
714
- @telemetry.add_stmt_params_to_df(
715
- project=_PROJECT,
716
- subproject=_SUBPROJECT,
717
- custom_tags=dict([("autogen", True)]),
718
- )
719
704
  def predict_log_proba(
720
705
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
721
706
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -752,16 +737,6 @@ class ColumnTransformer(BaseTransformer):
752
737
  return output_df
753
738
 
754
739
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
755
- @telemetry.send_api_usage_telemetry(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
- @telemetry.add_stmt_params_to_df(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
740
  def decision_function(
766
741
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
767
742
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -860,11 +835,6 @@ class ColumnTransformer(BaseTransformer):
860
835
  subproject=_SUBPROJECT,
861
836
  custom_tags=dict([("autogen", True)]),
862
837
  )
863
- @telemetry.add_stmt_params_to_df(
864
- project=_PROJECT,
865
- subproject=_SUBPROJECT,
866
- custom_tags=dict([("autogen", True)]),
867
- )
868
838
  def kneighbors(
869
839
  self,
870
840
  dataset: Union[DataFrame, pd.DataFrame],
@@ -924,9 +894,9 @@ class ColumnTransformer(BaseTransformer):
924
894
  # For classifier, the type of predict is the same as the type of label
925
895
  if self._sklearn_object._estimator_type == 'classifier':
926
896
  # label columns is the desired type for output
927
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
897
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
928
898
  # rename the output columns
929
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
899
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
930
900
  self._model_signature_dict["predict"] = ModelSignature(inputs,
931
901
  ([] if self._drop_input_cols else inputs)
932
902
  + outputs)