snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ColumnTransformer(BaseTransformer):
|
57
58
|
r"""Applies transformers to columns of an array or pandas DataFrame
|
58
59
|
For more details on this class, see [sklearn.compose.ColumnTransformer]
|
@@ -60,6 +61,49 @@ class ColumnTransformer(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
transformers: list of tuples
|
64
108
|
List of (name, transformer, columns) tuples specifying the
|
65
109
|
transformer objects to be applied to subsets of the data.
|
@@ -126,42 +170,6 @@ class ColumnTransformer(BaseTransformer):
|
|
126
170
|
with the name of the transformer that generated that feature.
|
127
171
|
If False, :meth:`get_feature_names_out` will not prefix any feature
|
128
172
|
names and will error if feature names are not unique.
|
129
|
-
|
130
|
-
input_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that contain features.
|
132
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
133
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
134
|
-
parameters are considered input columns.
|
135
|
-
|
136
|
-
label_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain labels.
|
138
|
-
This is a required param for estimators, as there is no way to infer these
|
139
|
-
columns. If this parameter is not specified, then object is fitted without
|
140
|
-
labels (like a transformer).
|
141
|
-
|
142
|
-
output_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that will store the
|
144
|
-
output of predict and transform operations. The length of output_cols must
|
145
|
-
match the expected number of output columns from the specific estimator or
|
146
|
-
transformer class used.
|
147
|
-
If this parameter is not specified, output column names are derived by
|
148
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
149
|
-
column names work for estimator's predict() method, but output_cols must
|
150
|
-
be set explicitly for transformers.
|
151
|
-
|
152
|
-
sample_weight_col: Optional[str]
|
153
|
-
A string representing the column name containing the sample weights.
|
154
|
-
This argument is only required when working with weighted datasets.
|
155
|
-
|
156
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
157
|
-
A string or a list of strings indicating column names to be excluded from any
|
158
|
-
operations (such as train, transform, or inference). These specified column(s)
|
159
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
160
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
161
|
-
columns, like index columns, during training or inference.
|
162
|
-
|
163
|
-
drop_input_cols: Optional[bool], default=False
|
164
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
165
173
|
"""
|
166
174
|
|
167
175
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -189,7 +197,7 @@ class ColumnTransformer(BaseTransformer):
|
|
189
197
|
self.set_passthrough_cols(passthrough_cols)
|
190
198
|
self.set_drop_input_cols(drop_input_cols)
|
191
199
|
self.set_sample_weight_col(sample_weight_col)
|
192
|
-
deps = set(
|
200
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
193
201
|
deps = deps | gather_dependencies(transformers)
|
194
202
|
self._deps = list(deps)
|
195
203
|
transformers = transform_snowml_obj_to_sklearn_obj(transformers)
|
@@ -204,13 +212,14 @@ class ColumnTransformer(BaseTransformer):
|
|
204
212
|
args=init_args,
|
205
213
|
klass=sklearn.compose.ColumnTransformer
|
206
214
|
)
|
207
|
-
self._sklearn_object = sklearn.compose.ColumnTransformer(
|
215
|
+
self._sklearn_object: Any = sklearn.compose.ColumnTransformer(
|
208
216
|
**cleaned_up_init_args,
|
209
217
|
)
|
210
218
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
211
219
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
212
220
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
213
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
221
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
222
|
+
self._autogenerated = True
|
214
223
|
|
215
224
|
def _get_rand_id(self) -> str:
|
216
225
|
"""
|
@@ -266,54 +275,48 @@ class ColumnTransformer(BaseTransformer):
|
|
266
275
|
self
|
267
276
|
"""
|
268
277
|
self._infer_input_output_cols(dataset)
|
269
|
-
if isinstance(dataset,
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
self.
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
278
|
+
if isinstance(dataset, DataFrame):
|
279
|
+
session = dataset._session
|
280
|
+
assert session is not None # keep mypy happy
|
281
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
282
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
283
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
284
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
285
|
+
|
286
|
+
# Specify input columns so column pruning will be enforced
|
287
|
+
selected_cols = self._get_active_columns()
|
288
|
+
if len(selected_cols) > 0:
|
289
|
+
dataset = dataset.select(selected_cols)
|
290
|
+
|
291
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
|
+
|
293
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
294
|
+
if SNOWML_SPROC_ENV in os.environ:
|
295
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
296
|
+
project=_PROJECT,
|
297
|
+
subproject=_SUBPROJECT,
|
298
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ColumnTransformer.__class__.__name__),
|
299
|
+
api_calls=[Session.call],
|
300
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
301
|
+
)
|
302
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
303
|
+
pd_df.columns = dataset.columns
|
304
|
+
dataset = pd_df
|
305
|
+
|
306
|
+
model_trainer = ModelTrainerBuilder.build(
|
307
|
+
estimator=self._sklearn_object,
|
308
|
+
dataset=dataset,
|
309
|
+
input_cols=self.input_cols,
|
310
|
+
label_cols=self.label_cols,
|
311
|
+
sample_weight_col=self.sample_weight_col,
|
312
|
+
autogenerated=self._autogenerated,
|
313
|
+
subproject=_SUBPROJECT
|
314
|
+
)
|
315
|
+
self._sklearn_object = model_trainer.train()
|
285
316
|
self._is_fitted = True
|
286
317
|
self._get_model_signatures(dataset)
|
287
318
|
return self
|
288
319
|
|
289
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
290
|
-
session = dataset._session
|
291
|
-
assert session is not None # keep mypy happy
|
292
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
293
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
294
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
295
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
296
|
-
|
297
|
-
# Specify input columns so column pruning will be enforced
|
298
|
-
selected_cols = self._get_active_columns()
|
299
|
-
if len(selected_cols) > 0:
|
300
|
-
dataset = dataset.select(selected_cols)
|
301
|
-
|
302
|
-
estimator = self._sklearn_object
|
303
|
-
assert estimator is not None # Keep mypy happy
|
304
|
-
|
305
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
306
|
-
|
307
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
308
|
-
dataset,
|
309
|
-
session,
|
310
|
-
estimator,
|
311
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
312
|
-
self.input_cols,
|
313
|
-
self.label_cols,
|
314
|
-
self.sample_weight_col,
|
315
|
-
)
|
316
|
-
|
317
320
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
318
321
|
if self._drop_input_cols:
|
319
322
|
return []
|
@@ -501,11 +504,6 @@ class ColumnTransformer(BaseTransformer):
|
|
501
504
|
subproject=_SUBPROJECT,
|
502
505
|
custom_tags=dict([("autogen", True)]),
|
503
506
|
)
|
504
|
-
@telemetry.add_stmt_params_to_df(
|
505
|
-
project=_PROJECT,
|
506
|
-
subproject=_SUBPROJECT,
|
507
|
-
custom_tags=dict([("autogen", True)]),
|
508
|
-
)
|
509
507
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
510
508
|
"""Method not supported for this class.
|
511
509
|
|
@@ -557,11 +555,6 @@ class ColumnTransformer(BaseTransformer):
|
|
557
555
|
subproject=_SUBPROJECT,
|
558
556
|
custom_tags=dict([("autogen", True)]),
|
559
557
|
)
|
560
|
-
@telemetry.add_stmt_params_to_df(
|
561
|
-
project=_PROJECT,
|
562
|
-
subproject=_SUBPROJECT,
|
563
|
-
custom_tags=dict([("autogen", True)]),
|
564
|
-
)
|
565
558
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
566
559
|
"""Transform X separately by each transformer, concatenate results
|
567
560
|
For more details on this function, see [sklearn.compose.ColumnTransformer.transform]
|
@@ -620,7 +613,8 @@ class ColumnTransformer(BaseTransformer):
|
|
620
613
|
if False:
|
621
614
|
self.fit(dataset)
|
622
615
|
assert self._sklearn_object is not None
|
623
|
-
|
616
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
617
|
+
return labels
|
624
618
|
else:
|
625
619
|
raise NotImplementedError
|
626
620
|
|
@@ -656,6 +650,7 @@ class ColumnTransformer(BaseTransformer):
|
|
656
650
|
output_cols = []
|
657
651
|
|
658
652
|
# Make sure column names are valid snowflake identifiers.
|
653
|
+
assert output_cols is not None # Make MyPy happy
|
659
654
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
660
655
|
|
661
656
|
return rv
|
@@ -666,11 +661,6 @@ class ColumnTransformer(BaseTransformer):
|
|
666
661
|
subproject=_SUBPROJECT,
|
667
662
|
custom_tags=dict([("autogen", True)]),
|
668
663
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
664
|
def predict_proba(
|
675
665
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
676
666
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -711,11 +701,6 @@ class ColumnTransformer(BaseTransformer):
|
|
711
701
|
subproject=_SUBPROJECT,
|
712
702
|
custom_tags=dict([("autogen", True)]),
|
713
703
|
)
|
714
|
-
@telemetry.add_stmt_params_to_df(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
704
|
def predict_log_proba(
|
720
705
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
721
706
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,16 +737,6 @@ class ColumnTransformer(BaseTransformer):
|
|
752
737
|
return output_df
|
753
738
|
|
754
739
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
755
|
-
@telemetry.send_api_usage_telemetry(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
|
-
@telemetry.add_stmt_params_to_df(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
740
|
def decision_function(
|
766
741
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
767
742
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -860,11 +835,6 @@ class ColumnTransformer(BaseTransformer):
|
|
860
835
|
subproject=_SUBPROJECT,
|
861
836
|
custom_tags=dict([("autogen", True)]),
|
862
837
|
)
|
863
|
-
@telemetry.add_stmt_params_to_df(
|
864
|
-
project=_PROJECT,
|
865
|
-
subproject=_SUBPROJECT,
|
866
|
-
custom_tags=dict([("autogen", True)]),
|
867
|
-
)
|
868
838
|
def kneighbors(
|
869
839
|
self,
|
870
840
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -924,9 +894,9 @@ class ColumnTransformer(BaseTransformer):
|
|
924
894
|
# For classifier, the type of predict is the same as the type of label
|
925
895
|
if self._sklearn_object._estimator_type == 'classifier':
|
926
896
|
# label columns is the desired type for output
|
927
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
897
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
928
898
|
# rename the output columns
|
929
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
899
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
930
900
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
931
901
|
([] if self._drop_input_cols else inputs)
|
932
902
|
+ outputs)
|