snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class EllipticEnvelope(BaseTransformer):
57
58
  r"""An object for detecting outliers in a Gaussian distributed dataset
58
59
  For more details on this class, see [sklearn.covariance.EllipticEnvelope]
@@ -60,6 +61,49 @@ class EllipticEnvelope(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  store_precision: bool, default=True
64
108
  Specify if the estimated precision is stored.
65
109
 
@@ -86,42 +130,6 @@ class EllipticEnvelope(BaseTransformer):
86
130
  Determines the pseudo random number generator for shuffling
87
131
  the data. Pass an int for reproducible results across multiple function
88
132
  calls. See :term:`Glossary <random_state>`.
89
-
90
- input_cols: Optional[Union[str, List[str]]]
91
- A string or list of strings representing column names that contain features.
92
- If this parameter is not specified, all columns in the input DataFrame except
93
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
94
- parameters are considered input columns.
95
-
96
- label_cols: Optional[Union[str, List[str]]]
97
- A string or list of strings representing column names that contain labels.
98
- This is a required param for estimators, as there is no way to infer these
99
- columns. If this parameter is not specified, then object is fitted without
100
- labels (like a transformer).
101
-
102
- output_cols: Optional[Union[str, List[str]]]
103
- A string or list of strings representing column names that will store the
104
- output of predict and transform operations. The length of output_cols must
105
- match the expected number of output columns from the specific estimator or
106
- transformer class used.
107
- If this parameter is not specified, output column names are derived by
108
- adding an OUTPUT_ prefix to the label column names. These inferred output
109
- column names work for estimator's predict() method, but output_cols must
110
- be set explicitly for transformers.
111
-
112
- sample_weight_col: Optional[str]
113
- A string representing the column name containing the sample weights.
114
- This argument is only required when working with weighted datasets.
115
-
116
- passthrough_cols: Optional[Union[str, List[str]]]
117
- A string or a list of strings indicating column names to be excluded from any
118
- operations (such as train, transform, or inference). These specified column(s)
119
- will remain untouched throughout the process. This option is helpful in scenarios
120
- requiring automatic input_cols inference, but need to avoid using specific
121
- columns, like index columns, during training or inference.
122
-
123
- drop_input_cols: Optional[bool], default=False
124
- If set, the response of predict(), transform() methods will not contain input columns.
125
133
  """
126
134
 
127
135
  def __init__( # type: ignore[no-untyped-def]
@@ -147,7 +155,7 @@ class EllipticEnvelope(BaseTransformer):
147
155
  self.set_passthrough_cols(passthrough_cols)
148
156
  self.set_drop_input_cols(drop_input_cols)
149
157
  self.set_sample_weight_col(sample_weight_col)
150
- deps = set(SklearnWrapperProvider().dependencies)
158
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
151
159
 
152
160
  self._deps = list(deps)
153
161
 
@@ -160,13 +168,14 @@ class EllipticEnvelope(BaseTransformer):
160
168
  args=init_args,
161
169
  klass=sklearn.covariance.EllipticEnvelope
162
170
  )
163
- self._sklearn_object = sklearn.covariance.EllipticEnvelope(
171
+ self._sklearn_object: Any = sklearn.covariance.EllipticEnvelope(
164
172
  **cleaned_up_init_args,
165
173
  )
166
174
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
167
175
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
168
176
  self._snowpark_cols: Optional[List[str]] = self.input_cols
169
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
177
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
178
+ self._autogenerated = True
170
179
 
171
180
  def _get_rand_id(self) -> str:
172
181
  """
@@ -222,54 +231,48 @@ class EllipticEnvelope(BaseTransformer):
222
231
  self
223
232
  """
224
233
  self._infer_input_output_cols(dataset)
225
- if isinstance(dataset, pd.DataFrame):
226
- assert self._sklearn_object is not None # keep mypy happy
227
- self._sklearn_object = self._handlers.fit_pandas(
228
- dataset,
229
- self._sklearn_object,
230
- self.input_cols,
231
- self.label_cols,
232
- self.sample_weight_col
233
- )
234
- elif isinstance(dataset, DataFrame):
235
- self._fit_snowpark(dataset)
236
- else:
237
- raise TypeError(
238
- f"Unexpected dataset type: {type(dataset)}."
239
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
240
- )
234
+ if isinstance(dataset, DataFrame):
235
+ session = dataset._session
236
+ assert session is not None # keep mypy happy
237
+ # Validate that key package version in user workspace are supported in snowflake conda channel
238
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
239
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
240
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
241
+
242
+ # Specify input columns so column pruning will be enforced
243
+ selected_cols = self._get_active_columns()
244
+ if len(selected_cols) > 0:
245
+ dataset = dataset.select(selected_cols)
246
+
247
+ self._snowpark_cols = dataset.select(self.input_cols).columns
248
+
249
+ # If we are already in a stored procedure, no need to kick off another one.
250
+ if SNOWML_SPROC_ENV in os.environ:
251
+ statement_params = telemetry.get_function_usage_statement_params(
252
+ project=_PROJECT,
253
+ subproject=_SUBPROJECT,
254
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
255
+ api_calls=[Session.call],
256
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
257
+ )
258
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
259
+ pd_df.columns = dataset.columns
260
+ dataset = pd_df
261
+
262
+ model_trainer = ModelTrainerBuilder.build(
263
+ estimator=self._sklearn_object,
264
+ dataset=dataset,
265
+ input_cols=self.input_cols,
266
+ label_cols=self.label_cols,
267
+ sample_weight_col=self.sample_weight_col,
268
+ autogenerated=self._autogenerated,
269
+ subproject=_SUBPROJECT
270
+ )
271
+ self._sklearn_object = model_trainer.train()
241
272
  self._is_fitted = True
242
273
  self._get_model_signatures(dataset)
243
274
  return self
244
275
 
245
- def _fit_snowpark(self, dataset: DataFrame) -> None:
246
- session = dataset._session
247
- assert session is not None # keep mypy happy
248
- # Validate that key package version in user workspace are supported in snowflake conda channel
249
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
250
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
251
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
252
-
253
- # Specify input columns so column pruning will be enforced
254
- selected_cols = self._get_active_columns()
255
- if len(selected_cols) > 0:
256
- dataset = dataset.select(selected_cols)
257
-
258
- estimator = self._sklearn_object
259
- assert estimator is not None # Keep mypy happy
260
-
261
- self._snowpark_cols = dataset.select(self.input_cols).columns
262
-
263
- self._sklearn_object = self._handlers.fit_snowpark(
264
- dataset,
265
- session,
266
- estimator,
267
- ["snowflake-snowpark-python"] + self._get_dependencies(),
268
- self.input_cols,
269
- self.label_cols,
270
- self.sample_weight_col,
271
- )
272
-
273
276
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
274
277
  if self._drop_input_cols:
275
278
  return []
@@ -457,11 +460,6 @@ class EllipticEnvelope(BaseTransformer):
457
460
  subproject=_SUBPROJECT,
458
461
  custom_tags=dict([("autogen", True)]),
459
462
  )
460
- @telemetry.add_stmt_params_to_df(
461
- project=_PROJECT,
462
- subproject=_SUBPROJECT,
463
- custom_tags=dict([("autogen", True)]),
464
- )
465
463
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
466
464
  """Predict labels (1 inlier, -1 outlier) of X according to fitted model
467
465
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.predict]
@@ -515,11 +513,6 @@ class EllipticEnvelope(BaseTransformer):
515
513
  subproject=_SUBPROJECT,
516
514
  custom_tags=dict([("autogen", True)]),
517
515
  )
518
- @telemetry.add_stmt_params_to_df(
519
- project=_PROJECT,
520
- subproject=_SUBPROJECT,
521
- custom_tags=dict([("autogen", True)]),
522
- )
523
516
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
524
517
  """Method not supported for this class.
525
518
 
@@ -578,7 +571,8 @@ class EllipticEnvelope(BaseTransformer):
578
571
  if False:
579
572
  self.fit(dataset)
580
573
  assert self._sklearn_object is not None
581
- return self._sklearn_object.labels_
574
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
575
+ return labels
582
576
  else:
583
577
  raise NotImplementedError
584
578
 
@@ -614,6 +608,7 @@ class EllipticEnvelope(BaseTransformer):
614
608
  output_cols = []
615
609
 
616
610
  # Make sure column names are valid snowflake identifiers.
611
+ assert output_cols is not None # Make MyPy happy
617
612
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
618
613
 
619
614
  return rv
@@ -624,11 +619,6 @@ class EllipticEnvelope(BaseTransformer):
624
619
  subproject=_SUBPROJECT,
625
620
  custom_tags=dict([("autogen", True)]),
626
621
  )
627
- @telemetry.add_stmt_params_to_df(
628
- project=_PROJECT,
629
- subproject=_SUBPROJECT,
630
- custom_tags=dict([("autogen", True)]),
631
- )
632
622
  def predict_proba(
633
623
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
634
624
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -669,11 +659,6 @@ class EllipticEnvelope(BaseTransformer):
669
659
  subproject=_SUBPROJECT,
670
660
  custom_tags=dict([("autogen", True)]),
671
661
  )
672
- @telemetry.add_stmt_params_to_df(
673
- project=_PROJECT,
674
- subproject=_SUBPROJECT,
675
- custom_tags=dict([("autogen", True)]),
676
- )
677
662
  def predict_log_proba(
678
663
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
679
664
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -710,16 +695,6 @@ class EllipticEnvelope(BaseTransformer):
710
695
  return output_df
711
696
 
712
697
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
713
- @telemetry.send_api_usage_telemetry(
714
- project=_PROJECT,
715
- subproject=_SUBPROJECT,
716
- custom_tags=dict([("autogen", True)]),
717
- )
718
- @telemetry.add_stmt_params_to_df(
719
- project=_PROJECT,
720
- subproject=_SUBPROJECT,
721
- custom_tags=dict([("autogen", True)]),
722
- )
723
698
  def decision_function(
724
699
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
725
700
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,11 +797,6 @@ class EllipticEnvelope(BaseTransformer):
822
797
  subproject=_SUBPROJECT,
823
798
  custom_tags=dict([("autogen", True)]),
824
799
  )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
800
  def kneighbors(
831
801
  self,
832
802
  dataset: Union[DataFrame, pd.DataFrame],
@@ -886,9 +856,9 @@ class EllipticEnvelope(BaseTransformer):
886
856
  # For classifier, the type of predict is the same as the type of label
887
857
  if self._sklearn_object._estimator_type == 'classifier':
888
858
  # label columns is the desired type for output
889
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
859
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
890
860
  # rename the output columns
891
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
861
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
892
862
  self._model_signature_dict["predict"] = ModelSignature(inputs,
893
863
  ([] if self._drop_input_cols else inputs)
894
864
  + outputs)