snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class EllipticEnvelope(BaseTransformer):
|
57
58
|
r"""An object for detecting outliers in a Gaussian distributed dataset
|
58
59
|
For more details on this class, see [sklearn.covariance.EllipticEnvelope]
|
@@ -60,6 +61,49 @@ class EllipticEnvelope(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
store_precision: bool, default=True
|
64
108
|
Specify if the estimated precision is stored.
|
65
109
|
|
@@ -86,42 +130,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
86
130
|
Determines the pseudo random number generator for shuffling
|
87
131
|
the data. Pass an int for reproducible results across multiple function
|
88
132
|
calls. See :term:`Glossary <random_state>`.
|
89
|
-
|
90
|
-
input_cols: Optional[Union[str, List[str]]]
|
91
|
-
A string or list of strings representing column names that contain features.
|
92
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
93
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
94
|
-
parameters are considered input columns.
|
95
|
-
|
96
|
-
label_cols: Optional[Union[str, List[str]]]
|
97
|
-
A string or list of strings representing column names that contain labels.
|
98
|
-
This is a required param for estimators, as there is no way to infer these
|
99
|
-
columns. If this parameter is not specified, then object is fitted without
|
100
|
-
labels (like a transformer).
|
101
|
-
|
102
|
-
output_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that will store the
|
104
|
-
output of predict and transform operations. The length of output_cols must
|
105
|
-
match the expected number of output columns from the specific estimator or
|
106
|
-
transformer class used.
|
107
|
-
If this parameter is not specified, output column names are derived by
|
108
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
109
|
-
column names work for estimator's predict() method, but output_cols must
|
110
|
-
be set explicitly for transformers.
|
111
|
-
|
112
|
-
sample_weight_col: Optional[str]
|
113
|
-
A string representing the column name containing the sample weights.
|
114
|
-
This argument is only required when working with weighted datasets.
|
115
|
-
|
116
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or a list of strings indicating column names to be excluded from any
|
118
|
-
operations (such as train, transform, or inference). These specified column(s)
|
119
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
120
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
121
|
-
columns, like index columns, during training or inference.
|
122
|
-
|
123
|
-
drop_input_cols: Optional[bool], default=False
|
124
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
125
133
|
"""
|
126
134
|
|
127
135
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -147,7 +155,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
147
155
|
self.set_passthrough_cols(passthrough_cols)
|
148
156
|
self.set_drop_input_cols(drop_input_cols)
|
149
157
|
self.set_sample_weight_col(sample_weight_col)
|
150
|
-
deps = set(
|
158
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
151
159
|
|
152
160
|
self._deps = list(deps)
|
153
161
|
|
@@ -160,13 +168,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
160
168
|
args=init_args,
|
161
169
|
klass=sklearn.covariance.EllipticEnvelope
|
162
170
|
)
|
163
|
-
self._sklearn_object = sklearn.covariance.EllipticEnvelope(
|
171
|
+
self._sklearn_object: Any = sklearn.covariance.EllipticEnvelope(
|
164
172
|
**cleaned_up_init_args,
|
165
173
|
)
|
166
174
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
167
175
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
168
176
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
169
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
177
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
178
|
+
self._autogenerated = True
|
170
179
|
|
171
180
|
def _get_rand_id(self) -> str:
|
172
181
|
"""
|
@@ -222,54 +231,48 @@ class EllipticEnvelope(BaseTransformer):
|
|
222
231
|
self
|
223
232
|
"""
|
224
233
|
self._infer_input_output_cols(dataset)
|
225
|
-
if isinstance(dataset,
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
self.
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
234
|
+
if isinstance(dataset, DataFrame):
|
235
|
+
session = dataset._session
|
236
|
+
assert session is not None # keep mypy happy
|
237
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
238
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
239
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
240
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
241
|
+
|
242
|
+
# Specify input columns so column pruning will be enforced
|
243
|
+
selected_cols = self._get_active_columns()
|
244
|
+
if len(selected_cols) > 0:
|
245
|
+
dataset = dataset.select(selected_cols)
|
246
|
+
|
247
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
248
|
+
|
249
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
250
|
+
if SNOWML_SPROC_ENV in os.environ:
|
251
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
252
|
+
project=_PROJECT,
|
253
|
+
subproject=_SUBPROJECT,
|
254
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
|
255
|
+
api_calls=[Session.call],
|
256
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
257
|
+
)
|
258
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
259
|
+
pd_df.columns = dataset.columns
|
260
|
+
dataset = pd_df
|
261
|
+
|
262
|
+
model_trainer = ModelTrainerBuilder.build(
|
263
|
+
estimator=self._sklearn_object,
|
264
|
+
dataset=dataset,
|
265
|
+
input_cols=self.input_cols,
|
266
|
+
label_cols=self.label_cols,
|
267
|
+
sample_weight_col=self.sample_weight_col,
|
268
|
+
autogenerated=self._autogenerated,
|
269
|
+
subproject=_SUBPROJECT
|
270
|
+
)
|
271
|
+
self._sklearn_object = model_trainer.train()
|
241
272
|
self._is_fitted = True
|
242
273
|
self._get_model_signatures(dataset)
|
243
274
|
return self
|
244
275
|
|
245
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
246
|
-
session = dataset._session
|
247
|
-
assert session is not None # keep mypy happy
|
248
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
-
|
253
|
-
# Specify input columns so column pruning will be enforced
|
254
|
-
selected_cols = self._get_active_columns()
|
255
|
-
if len(selected_cols) > 0:
|
256
|
-
dataset = dataset.select(selected_cols)
|
257
|
-
|
258
|
-
estimator = self._sklearn_object
|
259
|
-
assert estimator is not None # Keep mypy happy
|
260
|
-
|
261
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
-
|
263
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
264
|
-
dataset,
|
265
|
-
session,
|
266
|
-
estimator,
|
267
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
268
|
-
self.input_cols,
|
269
|
-
self.label_cols,
|
270
|
-
self.sample_weight_col,
|
271
|
-
)
|
272
|
-
|
273
276
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
274
277
|
if self._drop_input_cols:
|
275
278
|
return []
|
@@ -457,11 +460,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
457
460
|
subproject=_SUBPROJECT,
|
458
461
|
custom_tags=dict([("autogen", True)]),
|
459
462
|
)
|
460
|
-
@telemetry.add_stmt_params_to_df(
|
461
|
-
project=_PROJECT,
|
462
|
-
subproject=_SUBPROJECT,
|
463
|
-
custom_tags=dict([("autogen", True)]),
|
464
|
-
)
|
465
463
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
466
464
|
"""Predict labels (1 inlier, -1 outlier) of X according to fitted model
|
467
465
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.predict]
|
@@ -515,11 +513,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
515
513
|
subproject=_SUBPROJECT,
|
516
514
|
custom_tags=dict([("autogen", True)]),
|
517
515
|
)
|
518
|
-
@telemetry.add_stmt_params_to_df(
|
519
|
-
project=_PROJECT,
|
520
|
-
subproject=_SUBPROJECT,
|
521
|
-
custom_tags=dict([("autogen", True)]),
|
522
|
-
)
|
523
516
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
524
517
|
"""Method not supported for this class.
|
525
518
|
|
@@ -578,7 +571,8 @@ class EllipticEnvelope(BaseTransformer):
|
|
578
571
|
if False:
|
579
572
|
self.fit(dataset)
|
580
573
|
assert self._sklearn_object is not None
|
581
|
-
|
574
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
575
|
+
return labels
|
582
576
|
else:
|
583
577
|
raise NotImplementedError
|
584
578
|
|
@@ -614,6 +608,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
614
608
|
output_cols = []
|
615
609
|
|
616
610
|
# Make sure column names are valid snowflake identifiers.
|
611
|
+
assert output_cols is not None # Make MyPy happy
|
617
612
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
613
|
|
619
614
|
return rv
|
@@ -624,11 +619,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
624
619
|
subproject=_SUBPROJECT,
|
625
620
|
custom_tags=dict([("autogen", True)]),
|
626
621
|
)
|
627
|
-
@telemetry.add_stmt_params_to_df(
|
628
|
-
project=_PROJECT,
|
629
|
-
subproject=_SUBPROJECT,
|
630
|
-
custom_tags=dict([("autogen", True)]),
|
631
|
-
)
|
632
622
|
def predict_proba(
|
633
623
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
634
624
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -669,11 +659,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
669
659
|
subproject=_SUBPROJECT,
|
670
660
|
custom_tags=dict([("autogen", True)]),
|
671
661
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
662
|
def predict_log_proba(
|
678
663
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
679
664
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -710,16 +695,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
710
695
|
return output_df
|
711
696
|
|
712
697
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
713
|
-
@telemetry.send_api_usage_telemetry(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
698
|
def decision_function(
|
724
699
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
725
700
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -822,11 +797,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
822
797
|
subproject=_SUBPROJECT,
|
823
798
|
custom_tags=dict([("autogen", True)]),
|
824
799
|
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
800
|
def kneighbors(
|
831
801
|
self,
|
832
802
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -886,9 +856,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
886
856
|
# For classifier, the type of predict is the same as the type of label
|
887
857
|
if self._sklearn_object._estimator_type == 'classifier':
|
888
858
|
# label columns is the desired type for output
|
889
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
859
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
890
860
|
# rename the output columns
|
891
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
861
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
892
862
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
893
863
|
([] if self._drop_input_cols else inputs)
|
894
864
|
+ outputs)
|