snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianNB(BaseTransformer):
|
57
58
|
r"""Gaussian Naive Bayes (GaussianNB)
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.GaussianNB]
|
@@ -60,49 +61,58 @@ class GaussianNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
priors: array-like of shape (n_classes,), default=None
|
64
|
-
Prior probabilities of the classes. If specified, the priors are not
|
65
|
-
adjusted according to the data.
|
66
|
-
|
67
|
-
var_smoothing: float, default=1e-9
|
68
|
-
Portion of the largest variance of all features that is added to
|
69
|
-
variances for calculation stability.
|
70
64
|
|
71
65
|
input_cols: Optional[Union[str, List[str]]]
|
72
66
|
A string or list of strings representing column names that contain features.
|
73
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
74
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
75
|
-
parameters are considered input columns.
|
76
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
77
72
|
label_cols: Optional[Union[str, List[str]]]
|
78
73
|
A string or list of strings representing column names that contain labels.
|
79
|
-
|
80
|
-
|
81
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
82
76
|
|
83
77
|
output_cols: Optional[Union[str, List[str]]]
|
84
78
|
A string or list of strings representing column names that will store the
|
85
79
|
output of predict and transform operations. The length of output_cols must
|
86
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
87
81
|
transformer class used.
|
88
|
-
If this parameter
|
89
|
-
|
90
|
-
|
91
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
92
91
|
|
93
92
|
sample_weight_col: Optional[str]
|
94
93
|
A string representing the column name containing the sample weights.
|
95
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
96
97
|
|
97
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
98
99
|
A string or a list of strings indicating column names to be excluded from any
|
99
100
|
operations (such as train, transform, or inference). These specified column(s)
|
100
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
101
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
105
|
|
104
106
|
drop_input_cols: Optional[bool], default=False
|
105
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
priors: array-like of shape (n_classes,), default=None
|
110
|
+
Prior probabilities of the classes. If specified, the priors are not
|
111
|
+
adjusted according to the data.
|
112
|
+
|
113
|
+
var_smoothing: float, default=1e-9
|
114
|
+
Portion of the largest variance of all features that is added to
|
115
|
+
variances for calculation stability.
|
106
116
|
"""
|
107
117
|
|
108
118
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -125,7 +135,7 @@ class GaussianNB(BaseTransformer):
|
|
125
135
|
self.set_passthrough_cols(passthrough_cols)
|
126
136
|
self.set_drop_input_cols(drop_input_cols)
|
127
137
|
self.set_sample_weight_col(sample_weight_col)
|
128
|
-
deps = set(
|
138
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
129
139
|
|
130
140
|
self._deps = list(deps)
|
131
141
|
|
@@ -135,13 +145,14 @@ class GaussianNB(BaseTransformer):
|
|
135
145
|
args=init_args,
|
136
146
|
klass=sklearn.naive_bayes.GaussianNB
|
137
147
|
)
|
138
|
-
self._sklearn_object = sklearn.naive_bayes.GaussianNB(
|
148
|
+
self._sklearn_object: Any = sklearn.naive_bayes.GaussianNB(
|
139
149
|
**cleaned_up_init_args,
|
140
150
|
)
|
141
151
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
142
152
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
143
153
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
144
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
154
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
155
|
+
self._autogenerated = True
|
145
156
|
|
146
157
|
def _get_rand_id(self) -> str:
|
147
158
|
"""
|
@@ -197,54 +208,48 @@ class GaussianNB(BaseTransformer):
|
|
197
208
|
self
|
198
209
|
"""
|
199
210
|
self._infer_input_output_cols(dataset)
|
200
|
-
if isinstance(dataset,
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
self.
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
211
|
+
if isinstance(dataset, DataFrame):
|
212
|
+
session = dataset._session
|
213
|
+
assert session is not None # keep mypy happy
|
214
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
215
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
216
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
217
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
218
|
+
|
219
|
+
# Specify input columns so column pruning will be enforced
|
220
|
+
selected_cols = self._get_active_columns()
|
221
|
+
if len(selected_cols) > 0:
|
222
|
+
dataset = dataset.select(selected_cols)
|
223
|
+
|
224
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
225
|
+
|
226
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
227
|
+
if SNOWML_SPROC_ENV in os.environ:
|
228
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
229
|
+
project=_PROJECT,
|
230
|
+
subproject=_SUBPROJECT,
|
231
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianNB.__class__.__name__),
|
232
|
+
api_calls=[Session.call],
|
233
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
234
|
+
)
|
235
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
236
|
+
pd_df.columns = dataset.columns
|
237
|
+
dataset = pd_df
|
238
|
+
|
239
|
+
model_trainer = ModelTrainerBuilder.build(
|
240
|
+
estimator=self._sklearn_object,
|
241
|
+
dataset=dataset,
|
242
|
+
input_cols=self.input_cols,
|
243
|
+
label_cols=self.label_cols,
|
244
|
+
sample_weight_col=self.sample_weight_col,
|
245
|
+
autogenerated=self._autogenerated,
|
246
|
+
subproject=_SUBPROJECT
|
247
|
+
)
|
248
|
+
self._sklearn_object = model_trainer.train()
|
216
249
|
self._is_fitted = True
|
217
250
|
self._get_model_signatures(dataset)
|
218
251
|
return self
|
219
252
|
|
220
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
221
|
-
session = dataset._session
|
222
|
-
assert session is not None # keep mypy happy
|
223
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
224
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
225
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
226
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
227
|
-
|
228
|
-
# Specify input columns so column pruning will be enforced
|
229
|
-
selected_cols = self._get_active_columns()
|
230
|
-
if len(selected_cols) > 0:
|
231
|
-
dataset = dataset.select(selected_cols)
|
232
|
-
|
233
|
-
estimator = self._sklearn_object
|
234
|
-
assert estimator is not None # Keep mypy happy
|
235
|
-
|
236
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
237
|
-
|
238
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
239
|
-
dataset,
|
240
|
-
session,
|
241
|
-
estimator,
|
242
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
243
|
-
self.input_cols,
|
244
|
-
self.label_cols,
|
245
|
-
self.sample_weight_col,
|
246
|
-
)
|
247
|
-
|
248
253
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
249
254
|
if self._drop_input_cols:
|
250
255
|
return []
|
@@ -432,11 +437,6 @@ class GaussianNB(BaseTransformer):
|
|
432
437
|
subproject=_SUBPROJECT,
|
433
438
|
custom_tags=dict([("autogen", True)]),
|
434
439
|
)
|
435
|
-
@telemetry.add_stmt_params_to_df(
|
436
|
-
project=_PROJECT,
|
437
|
-
subproject=_SUBPROJECT,
|
438
|
-
custom_tags=dict([("autogen", True)]),
|
439
|
-
)
|
440
440
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
441
441
|
"""Perform classification on an array of test vectors X
|
442
442
|
For more details on this function, see [sklearn.naive_bayes.GaussianNB.predict]
|
@@ -490,11 +490,6 @@ class GaussianNB(BaseTransformer):
|
|
490
490
|
subproject=_SUBPROJECT,
|
491
491
|
custom_tags=dict([("autogen", True)]),
|
492
492
|
)
|
493
|
-
@telemetry.add_stmt_params_to_df(
|
494
|
-
project=_PROJECT,
|
495
|
-
subproject=_SUBPROJECT,
|
496
|
-
custom_tags=dict([("autogen", True)]),
|
497
|
-
)
|
498
493
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
499
494
|
"""Method not supported for this class.
|
500
495
|
|
@@ -551,7 +546,8 @@ class GaussianNB(BaseTransformer):
|
|
551
546
|
if False:
|
552
547
|
self.fit(dataset)
|
553
548
|
assert self._sklearn_object is not None
|
554
|
-
|
549
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
550
|
+
return labels
|
555
551
|
else:
|
556
552
|
raise NotImplementedError
|
557
553
|
|
@@ -587,6 +583,7 @@ class GaussianNB(BaseTransformer):
|
|
587
583
|
output_cols = []
|
588
584
|
|
589
585
|
# Make sure column names are valid snowflake identifiers.
|
586
|
+
assert output_cols is not None # Make MyPy happy
|
590
587
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
591
588
|
|
592
589
|
return rv
|
@@ -597,11 +594,6 @@ class GaussianNB(BaseTransformer):
|
|
597
594
|
subproject=_SUBPROJECT,
|
598
595
|
custom_tags=dict([("autogen", True)]),
|
599
596
|
)
|
600
|
-
@telemetry.add_stmt_params_to_df(
|
601
|
-
project=_PROJECT,
|
602
|
-
subproject=_SUBPROJECT,
|
603
|
-
custom_tags=dict([("autogen", True)]),
|
604
|
-
)
|
605
597
|
def predict_proba(
|
606
598
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
607
599
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -644,11 +636,6 @@ class GaussianNB(BaseTransformer):
|
|
644
636
|
subproject=_SUBPROJECT,
|
645
637
|
custom_tags=dict([("autogen", True)]),
|
646
638
|
)
|
647
|
-
@telemetry.add_stmt_params_to_df(
|
648
|
-
project=_PROJECT,
|
649
|
-
subproject=_SUBPROJECT,
|
650
|
-
custom_tags=dict([("autogen", True)]),
|
651
|
-
)
|
652
639
|
def predict_log_proba(
|
653
640
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
654
641
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -687,16 +674,6 @@ class GaussianNB(BaseTransformer):
|
|
687
674
|
return output_df
|
688
675
|
|
689
676
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
690
|
-
@telemetry.send_api_usage_telemetry(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
|
-
@telemetry.add_stmt_params_to_df(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
677
|
def decision_function(
|
701
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
702
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -797,11 +774,6 @@ class GaussianNB(BaseTransformer):
|
|
797
774
|
subproject=_SUBPROJECT,
|
798
775
|
custom_tags=dict([("autogen", True)]),
|
799
776
|
)
|
800
|
-
@telemetry.add_stmt_params_to_df(
|
801
|
-
project=_PROJECT,
|
802
|
-
subproject=_SUBPROJECT,
|
803
|
-
custom_tags=dict([("autogen", True)]),
|
804
|
-
)
|
805
777
|
def kneighbors(
|
806
778
|
self,
|
807
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -861,9 +833,9 @@ class GaussianNB(BaseTransformer):
|
|
861
833
|
# For classifier, the type of predict is the same as the type of label
|
862
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
863
835
|
# label columns is the desired type for output
|
864
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
865
837
|
# rename the output columns
|
866
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
867
839
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
868
840
|
([] if self._drop_input_cols else inputs)
|
869
841
|
+ outputs)
|