snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianNB(BaseTransformer):
57
58
  r"""Gaussian Naive Bayes (GaussianNB)
58
59
  For more details on this class, see [sklearn.naive_bayes.GaussianNB]
@@ -60,49 +61,58 @@ class GaussianNB(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- priors: array-like of shape (n_classes,), default=None
64
- Prior probabilities of the classes. If specified, the priors are not
65
- adjusted according to the data.
66
-
67
- var_smoothing: float, default=1e-9
68
- Portion of the largest variance of all features that is added to
69
- variances for calculation stability.
70
64
 
71
65
  input_cols: Optional[Union[str, List[str]]]
72
66
  A string or list of strings representing column names that contain features.
73
67
  If this parameter is not specified, all columns in the input DataFrame except
74
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
75
- parameters are considered input columns.
76
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
77
72
  label_cols: Optional[Union[str, List[str]]]
78
73
  A string or list of strings representing column names that contain labels.
79
- This is a required param for estimators, as there is no way to infer these
80
- columns. If this parameter is not specified, then object is fitted without
81
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
82
76
 
83
77
  output_cols: Optional[Union[str, List[str]]]
84
78
  A string or list of strings representing column names that will store the
85
79
  output of predict and transform operations. The length of output_cols must
86
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
87
81
  transformer class used.
88
- If this parameter is not specified, output column names are derived by
89
- adding an OUTPUT_ prefix to the label column names. These inferred output
90
- column names work for estimator's predict() method, but output_cols must
91
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
92
91
 
93
92
  sample_weight_col: Optional[str]
94
93
  A string representing the column name containing the sample weights.
95
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
96
97
 
97
98
  passthrough_cols: Optional[Union[str, List[str]]]
98
99
  A string or a list of strings indicating column names to be excluded from any
99
100
  operations (such as train, transform, or inference). These specified column(s)
100
101
  will remain untouched throughout the process. This option is helpful in scenarios
101
102
  requiring automatic input_cols inference, but need to avoid using specific
102
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
103
105
 
104
106
  drop_input_cols: Optional[bool], default=False
105
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ priors: array-like of shape (n_classes,), default=None
110
+ Prior probabilities of the classes. If specified, the priors are not
111
+ adjusted according to the data.
112
+
113
+ var_smoothing: float, default=1e-9
114
+ Portion of the largest variance of all features that is added to
115
+ variances for calculation stability.
106
116
  """
107
117
 
108
118
  def __init__( # type: ignore[no-untyped-def]
@@ -125,7 +135,7 @@ class GaussianNB(BaseTransformer):
125
135
  self.set_passthrough_cols(passthrough_cols)
126
136
  self.set_drop_input_cols(drop_input_cols)
127
137
  self.set_sample_weight_col(sample_weight_col)
128
- deps = set(SklearnWrapperProvider().dependencies)
138
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
129
139
 
130
140
  self._deps = list(deps)
131
141
 
@@ -135,13 +145,14 @@ class GaussianNB(BaseTransformer):
135
145
  args=init_args,
136
146
  klass=sklearn.naive_bayes.GaussianNB
137
147
  )
138
- self._sklearn_object = sklearn.naive_bayes.GaussianNB(
148
+ self._sklearn_object: Any = sklearn.naive_bayes.GaussianNB(
139
149
  **cleaned_up_init_args,
140
150
  )
141
151
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
142
152
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
143
153
  self._snowpark_cols: Optional[List[str]] = self.input_cols
144
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
154
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
155
+ self._autogenerated = True
145
156
 
146
157
  def _get_rand_id(self) -> str:
147
158
  """
@@ -197,54 +208,48 @@ class GaussianNB(BaseTransformer):
197
208
  self
198
209
  """
199
210
  self._infer_input_output_cols(dataset)
200
- if isinstance(dataset, pd.DataFrame):
201
- assert self._sklearn_object is not None # keep mypy happy
202
- self._sklearn_object = self._handlers.fit_pandas(
203
- dataset,
204
- self._sklearn_object,
205
- self.input_cols,
206
- self.label_cols,
207
- self.sample_weight_col
208
- )
209
- elif isinstance(dataset, DataFrame):
210
- self._fit_snowpark(dataset)
211
- else:
212
- raise TypeError(
213
- f"Unexpected dataset type: {type(dataset)}."
214
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
215
- )
211
+ if isinstance(dataset, DataFrame):
212
+ session = dataset._session
213
+ assert session is not None # keep mypy happy
214
+ # Validate that key package version in user workspace are supported in snowflake conda channel
215
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
216
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
217
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
218
+
219
+ # Specify input columns so column pruning will be enforced
220
+ selected_cols = self._get_active_columns()
221
+ if len(selected_cols) > 0:
222
+ dataset = dataset.select(selected_cols)
223
+
224
+ self._snowpark_cols = dataset.select(self.input_cols).columns
225
+
226
+ # If we are already in a stored procedure, no need to kick off another one.
227
+ if SNOWML_SPROC_ENV in os.environ:
228
+ statement_params = telemetry.get_function_usage_statement_params(
229
+ project=_PROJECT,
230
+ subproject=_SUBPROJECT,
231
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianNB.__class__.__name__),
232
+ api_calls=[Session.call],
233
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
234
+ )
235
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
236
+ pd_df.columns = dataset.columns
237
+ dataset = pd_df
238
+
239
+ model_trainer = ModelTrainerBuilder.build(
240
+ estimator=self._sklearn_object,
241
+ dataset=dataset,
242
+ input_cols=self.input_cols,
243
+ label_cols=self.label_cols,
244
+ sample_weight_col=self.sample_weight_col,
245
+ autogenerated=self._autogenerated,
246
+ subproject=_SUBPROJECT
247
+ )
248
+ self._sklearn_object = model_trainer.train()
216
249
  self._is_fitted = True
217
250
  self._get_model_signatures(dataset)
218
251
  return self
219
252
 
220
- def _fit_snowpark(self, dataset: DataFrame) -> None:
221
- session = dataset._session
222
- assert session is not None # keep mypy happy
223
- # Validate that key package version in user workspace are supported in snowflake conda channel
224
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
225
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
226
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
227
-
228
- # Specify input columns so column pruning will be enforced
229
- selected_cols = self._get_active_columns()
230
- if len(selected_cols) > 0:
231
- dataset = dataset.select(selected_cols)
232
-
233
- estimator = self._sklearn_object
234
- assert estimator is not None # Keep mypy happy
235
-
236
- self._snowpark_cols = dataset.select(self.input_cols).columns
237
-
238
- self._sklearn_object = self._handlers.fit_snowpark(
239
- dataset,
240
- session,
241
- estimator,
242
- ["snowflake-snowpark-python"] + self._get_dependencies(),
243
- self.input_cols,
244
- self.label_cols,
245
- self.sample_weight_col,
246
- )
247
-
248
253
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
249
254
  if self._drop_input_cols:
250
255
  return []
@@ -432,11 +437,6 @@ class GaussianNB(BaseTransformer):
432
437
  subproject=_SUBPROJECT,
433
438
  custom_tags=dict([("autogen", True)]),
434
439
  )
435
- @telemetry.add_stmt_params_to_df(
436
- project=_PROJECT,
437
- subproject=_SUBPROJECT,
438
- custom_tags=dict([("autogen", True)]),
439
- )
440
440
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
441
441
  """Perform classification on an array of test vectors X
442
442
  For more details on this function, see [sklearn.naive_bayes.GaussianNB.predict]
@@ -490,11 +490,6 @@ class GaussianNB(BaseTransformer):
490
490
  subproject=_SUBPROJECT,
491
491
  custom_tags=dict([("autogen", True)]),
492
492
  )
493
- @telemetry.add_stmt_params_to_df(
494
- project=_PROJECT,
495
- subproject=_SUBPROJECT,
496
- custom_tags=dict([("autogen", True)]),
497
- )
498
493
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
499
494
  """Method not supported for this class.
500
495
 
@@ -551,7 +546,8 @@ class GaussianNB(BaseTransformer):
551
546
  if False:
552
547
  self.fit(dataset)
553
548
  assert self._sklearn_object is not None
554
- return self._sklearn_object.labels_
549
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
550
+ return labels
555
551
  else:
556
552
  raise NotImplementedError
557
553
 
@@ -587,6 +583,7 @@ class GaussianNB(BaseTransformer):
587
583
  output_cols = []
588
584
 
589
585
  # Make sure column names are valid snowflake identifiers.
586
+ assert output_cols is not None # Make MyPy happy
590
587
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
591
588
 
592
589
  return rv
@@ -597,11 +594,6 @@ class GaussianNB(BaseTransformer):
597
594
  subproject=_SUBPROJECT,
598
595
  custom_tags=dict([("autogen", True)]),
599
596
  )
600
- @telemetry.add_stmt_params_to_df(
601
- project=_PROJECT,
602
- subproject=_SUBPROJECT,
603
- custom_tags=dict([("autogen", True)]),
604
- )
605
597
  def predict_proba(
606
598
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
607
599
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -644,11 +636,6 @@ class GaussianNB(BaseTransformer):
644
636
  subproject=_SUBPROJECT,
645
637
  custom_tags=dict([("autogen", True)]),
646
638
  )
647
- @telemetry.add_stmt_params_to_df(
648
- project=_PROJECT,
649
- subproject=_SUBPROJECT,
650
- custom_tags=dict([("autogen", True)]),
651
- )
652
639
  def predict_log_proba(
653
640
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
654
641
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -687,16 +674,6 @@ class GaussianNB(BaseTransformer):
687
674
  return output_df
688
675
 
689
676
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
690
- @telemetry.send_api_usage_telemetry(
691
- project=_PROJECT,
692
- subproject=_SUBPROJECT,
693
- custom_tags=dict([("autogen", True)]),
694
- )
695
- @telemetry.add_stmt_params_to_df(
696
- project=_PROJECT,
697
- subproject=_SUBPROJECT,
698
- custom_tags=dict([("autogen", True)]),
699
- )
700
677
  def decision_function(
701
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
702
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -797,11 +774,6 @@ class GaussianNB(BaseTransformer):
797
774
  subproject=_SUBPROJECT,
798
775
  custom_tags=dict([("autogen", True)]),
799
776
  )
800
- @telemetry.add_stmt_params_to_df(
801
- project=_PROJECT,
802
- subproject=_SUBPROJECT,
803
- custom_tags=dict([("autogen", True)]),
804
- )
805
777
  def kneighbors(
806
778
  self,
807
779
  dataset: Union[DataFrame, pd.DataFrame],
@@ -861,9 +833,9 @@ class GaussianNB(BaseTransformer):
861
833
  # For classifier, the type of predict is the same as the type of label
862
834
  if self._sklearn_object._estimator_type == 'classifier':
863
835
  # label columns is the desired type for output
864
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
836
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
865
837
  # rename the output columns
866
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
838
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
867
839
  self._model_signature_dict["predict"] = ModelSignature(inputs,
868
840
  ([] if self._drop_input_cols else inputs)
869
841
  + outputs)