snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -133,7 +133,7 @@ class Base:
|
|
133
133
|
|
134
134
|
def get_passthrough_cols(self) -> List[str]:
|
135
135
|
"""
|
136
|
-
|
136
|
+
Passthrough columns getter.
|
137
137
|
|
138
138
|
Returns:
|
139
139
|
Passthrough column(s).
|
@@ -142,7 +142,7 @@ class Base:
|
|
142
142
|
|
143
143
|
def set_passthrough_cols(self, passthrough_cols: Optional[Union[str, Iterable[str]]]) -> "Base":
|
144
144
|
"""
|
145
|
-
|
145
|
+
Passthrough columns setter.
|
146
146
|
|
147
147
|
Args:
|
148
148
|
passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
|
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianProcessClassifier(BaseTransformer):
|
57
58
|
r"""Gaussian process classification (GPC) based on Laplace approximation
|
58
59
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
|
@@ -60,6 +61,51 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: kernel instance, default=None
|
64
110
|
The kernel specifying the covariance function of the GP. If None is
|
65
111
|
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
@@ -141,42 +187,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
141
187
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
142
188
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
143
189
|
for more details.
|
144
|
-
|
145
|
-
input_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that contain features.
|
147
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
148
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
149
|
-
parameters are considered input columns.
|
150
|
-
|
151
|
-
label_cols: Optional[Union[str, List[str]]]
|
152
|
-
A string or list of strings representing column names that contain labels.
|
153
|
-
This is a required param for estimators, as there is no way to infer these
|
154
|
-
columns. If this parameter is not specified, then object is fitted without
|
155
|
-
labels (like a transformer).
|
156
|
-
|
157
|
-
output_cols: Optional[Union[str, List[str]]]
|
158
|
-
A string or list of strings representing column names that will store the
|
159
|
-
output of predict and transform operations. The length of output_cols must
|
160
|
-
match the expected number of output columns from the specific estimator or
|
161
|
-
transformer class used.
|
162
|
-
If this parameter is not specified, output column names are derived by
|
163
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
164
|
-
column names work for estimator's predict() method, but output_cols must
|
165
|
-
be set explicitly for transformers.
|
166
|
-
|
167
|
-
sample_weight_col: Optional[str]
|
168
|
-
A string representing the column name containing the sample weights.
|
169
|
-
This argument is only required when working with weighted datasets.
|
170
|
-
|
171
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
172
|
-
A string or a list of strings indicating column names to be excluded from any
|
173
|
-
operations (such as train, transform, or inference). These specified column(s)
|
174
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
175
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
176
|
-
columns, like index columns, during training or inference.
|
177
|
-
|
178
|
-
drop_input_cols: Optional[bool], default=False
|
179
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
180
190
|
"""
|
181
191
|
|
182
192
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -206,7 +216,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
206
216
|
self.set_passthrough_cols(passthrough_cols)
|
207
217
|
self.set_drop_input_cols(drop_input_cols)
|
208
218
|
self.set_sample_weight_col(sample_weight_col)
|
209
|
-
deps = set(
|
219
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
210
220
|
|
211
221
|
self._deps = list(deps)
|
212
222
|
|
@@ -223,13 +233,14 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
223
233
|
args=init_args,
|
224
234
|
klass=sklearn.gaussian_process.GaussianProcessClassifier
|
225
235
|
)
|
226
|
-
self._sklearn_object = sklearn.gaussian_process.GaussianProcessClassifier(
|
236
|
+
self._sklearn_object: Any = sklearn.gaussian_process.GaussianProcessClassifier(
|
227
237
|
**cleaned_up_init_args,
|
228
238
|
)
|
229
239
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
230
240
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
231
241
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
232
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
242
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
243
|
+
self._autogenerated = True
|
233
244
|
|
234
245
|
def _get_rand_id(self) -> str:
|
235
246
|
"""
|
@@ -285,54 +296,48 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
285
296
|
self
|
286
297
|
"""
|
287
298
|
self._infer_input_output_cols(dataset)
|
288
|
-
if isinstance(dataset,
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
self.
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
299
|
+
if isinstance(dataset, DataFrame):
|
300
|
+
session = dataset._session
|
301
|
+
assert session is not None # keep mypy happy
|
302
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
303
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
304
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
305
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
306
|
+
|
307
|
+
# Specify input columns so column pruning will be enforced
|
308
|
+
selected_cols = self._get_active_columns()
|
309
|
+
if len(selected_cols) > 0:
|
310
|
+
dataset = dataset.select(selected_cols)
|
311
|
+
|
312
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
313
|
+
|
314
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
315
|
+
if SNOWML_SPROC_ENV in os.environ:
|
316
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
317
|
+
project=_PROJECT,
|
318
|
+
subproject=_SUBPROJECT,
|
319
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianProcessClassifier.__class__.__name__),
|
320
|
+
api_calls=[Session.call],
|
321
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
322
|
+
)
|
323
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
324
|
+
pd_df.columns = dataset.columns
|
325
|
+
dataset = pd_df
|
326
|
+
|
327
|
+
model_trainer = ModelTrainerBuilder.build(
|
328
|
+
estimator=self._sklearn_object,
|
329
|
+
dataset=dataset,
|
330
|
+
input_cols=self.input_cols,
|
331
|
+
label_cols=self.label_cols,
|
332
|
+
sample_weight_col=self.sample_weight_col,
|
333
|
+
autogenerated=self._autogenerated,
|
334
|
+
subproject=_SUBPROJECT
|
335
|
+
)
|
336
|
+
self._sklearn_object = model_trainer.train()
|
304
337
|
self._is_fitted = True
|
305
338
|
self._get_model_signatures(dataset)
|
306
339
|
return self
|
307
340
|
|
308
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
309
|
-
session = dataset._session
|
310
|
-
assert session is not None # keep mypy happy
|
311
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
312
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
313
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
314
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
315
|
-
|
316
|
-
# Specify input columns so column pruning will be enforced
|
317
|
-
selected_cols = self._get_active_columns()
|
318
|
-
if len(selected_cols) > 0:
|
319
|
-
dataset = dataset.select(selected_cols)
|
320
|
-
|
321
|
-
estimator = self._sklearn_object
|
322
|
-
assert estimator is not None # Keep mypy happy
|
323
|
-
|
324
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
|
-
|
326
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
327
|
-
dataset,
|
328
|
-
session,
|
329
|
-
estimator,
|
330
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
331
|
-
self.input_cols,
|
332
|
-
self.label_cols,
|
333
|
-
self.sample_weight_col,
|
334
|
-
)
|
335
|
-
|
336
341
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
337
342
|
if self._drop_input_cols:
|
338
343
|
return []
|
@@ -520,11 +525,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
520
525
|
subproject=_SUBPROJECT,
|
521
526
|
custom_tags=dict([("autogen", True)]),
|
522
527
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
528
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
529
|
"""Perform classification on an array of test vectors X
|
530
530
|
For more details on this function, see [sklearn.gaussian_process.GaussianProcessClassifier.predict]
|
@@ -578,11 +578,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
578
578
|
subproject=_SUBPROJECT,
|
579
579
|
custom_tags=dict([("autogen", True)]),
|
580
580
|
)
|
581
|
-
@telemetry.add_stmt_params_to_df(
|
582
|
-
project=_PROJECT,
|
583
|
-
subproject=_SUBPROJECT,
|
584
|
-
custom_tags=dict([("autogen", True)]),
|
585
|
-
)
|
586
581
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
587
582
|
"""Method not supported for this class.
|
588
583
|
|
@@ -639,7 +634,8 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
639
634
|
if False:
|
640
635
|
self.fit(dataset)
|
641
636
|
assert self._sklearn_object is not None
|
642
|
-
|
637
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
638
|
+
return labels
|
643
639
|
else:
|
644
640
|
raise NotImplementedError
|
645
641
|
|
@@ -675,6 +671,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
675
671
|
output_cols = []
|
676
672
|
|
677
673
|
# Make sure column names are valid snowflake identifiers.
|
674
|
+
assert output_cols is not None # Make MyPy happy
|
678
675
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
679
676
|
|
680
677
|
return rv
|
@@ -685,11 +682,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
685
682
|
subproject=_SUBPROJECT,
|
686
683
|
custom_tags=dict([("autogen", True)]),
|
687
684
|
)
|
688
|
-
@telemetry.add_stmt_params_to_df(
|
689
|
-
project=_PROJECT,
|
690
|
-
subproject=_SUBPROJECT,
|
691
|
-
custom_tags=dict([("autogen", True)]),
|
692
|
-
)
|
693
685
|
def predict_proba(
|
694
686
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
695
687
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,11 +724,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
732
724
|
subproject=_SUBPROJECT,
|
733
725
|
custom_tags=dict([("autogen", True)]),
|
734
726
|
)
|
735
|
-
@telemetry.add_stmt_params_to_df(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
727
|
def predict_log_proba(
|
741
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
742
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -775,16 +762,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
775
762
|
return output_df
|
776
763
|
|
777
764
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
778
|
-
@telemetry.send_api_usage_telemetry(
|
779
|
-
project=_PROJECT,
|
780
|
-
subproject=_SUBPROJECT,
|
781
|
-
custom_tags=dict([("autogen", True)]),
|
782
|
-
)
|
783
|
-
@telemetry.add_stmt_params_to_df(
|
784
|
-
project=_PROJECT,
|
785
|
-
subproject=_SUBPROJECT,
|
786
|
-
custom_tags=dict([("autogen", True)]),
|
787
|
-
)
|
788
765
|
def decision_function(
|
789
766
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
790
767
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -885,11 +862,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
885
862
|
subproject=_SUBPROJECT,
|
886
863
|
custom_tags=dict([("autogen", True)]),
|
887
864
|
)
|
888
|
-
@telemetry.add_stmt_params_to_df(
|
889
|
-
project=_PROJECT,
|
890
|
-
subproject=_SUBPROJECT,
|
891
|
-
custom_tags=dict([("autogen", True)]),
|
892
|
-
)
|
893
865
|
def kneighbors(
|
894
866
|
self,
|
895
867
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -949,9 +921,9 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
949
921
|
# For classifier, the type of predict is the same as the type of label
|
950
922
|
if self._sklearn_object._estimator_type == 'classifier':
|
951
923
|
# label columns is the desired type for output
|
952
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
924
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
953
925
|
# rename the output columns
|
954
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
926
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
955
927
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
956
928
|
([] if self._drop_input_cols else inputs)
|
957
929
|
+ outputs)
|