snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -133,7 +133,7 @@ class Base:
133
133
 
134
134
  def get_passthrough_cols(self) -> List[str]:
135
135
  """
136
- Getter method for passthrough_cols attribute.
136
+ Passthrough columns getter.
137
137
 
138
138
  Returns:
139
139
  Passthrough column(s).
@@ -142,7 +142,7 @@ class Base:
142
142
 
143
143
  def set_passthrough_cols(self, passthrough_cols: Optional[Union[str, Iterable[str]]]) -> "Base":
144
144
  """
145
- Setter method passthrough_cols attribute.
145
+ Passthrough columns setter.
146
146
 
147
147
  Args:
148
148
  passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianProcessClassifier(BaseTransformer):
57
58
  r"""Gaussian process classification (GPC) based on Laplace approximation
58
59
  For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
@@ -60,6 +61,51 @@ class GaussianProcessClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  kernel: kernel instance, default=None
64
110
  The kernel specifying the covariance function of the GP. If None is
65
111
  passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
@@ -141,42 +187,6 @@ class GaussianProcessClassifier(BaseTransformer):
141
187
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
142
188
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
143
189
  for more details.
144
-
145
- input_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that contain features.
147
- If this parameter is not specified, all columns in the input DataFrame except
148
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
149
- parameters are considered input columns.
150
-
151
- label_cols: Optional[Union[str, List[str]]]
152
- A string or list of strings representing column names that contain labels.
153
- This is a required param for estimators, as there is no way to infer these
154
- columns. If this parameter is not specified, then object is fitted without
155
- labels (like a transformer).
156
-
157
- output_cols: Optional[Union[str, List[str]]]
158
- A string or list of strings representing column names that will store the
159
- output of predict and transform operations. The length of output_cols must
160
- match the expected number of output columns from the specific estimator or
161
- transformer class used.
162
- If this parameter is not specified, output column names are derived by
163
- adding an OUTPUT_ prefix to the label column names. These inferred output
164
- column names work for estimator's predict() method, but output_cols must
165
- be set explicitly for transformers.
166
-
167
- sample_weight_col: Optional[str]
168
- A string representing the column name containing the sample weights.
169
- This argument is only required when working with weighted datasets.
170
-
171
- passthrough_cols: Optional[Union[str, List[str]]]
172
- A string or a list of strings indicating column names to be excluded from any
173
- operations (such as train, transform, or inference). These specified column(s)
174
- will remain untouched throughout the process. This option is helpful in scenarios
175
- requiring automatic input_cols inference, but need to avoid using specific
176
- columns, like index columns, during training or inference.
177
-
178
- drop_input_cols: Optional[bool], default=False
179
- If set, the response of predict(), transform() methods will not contain input columns.
180
190
  """
181
191
 
182
192
  def __init__( # type: ignore[no-untyped-def]
@@ -206,7 +216,7 @@ class GaussianProcessClassifier(BaseTransformer):
206
216
  self.set_passthrough_cols(passthrough_cols)
207
217
  self.set_drop_input_cols(drop_input_cols)
208
218
  self.set_sample_weight_col(sample_weight_col)
209
- deps = set(SklearnWrapperProvider().dependencies)
219
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
210
220
 
211
221
  self._deps = list(deps)
212
222
 
@@ -223,13 +233,14 @@ class GaussianProcessClassifier(BaseTransformer):
223
233
  args=init_args,
224
234
  klass=sklearn.gaussian_process.GaussianProcessClassifier
225
235
  )
226
- self._sklearn_object = sklearn.gaussian_process.GaussianProcessClassifier(
236
+ self._sklearn_object: Any = sklearn.gaussian_process.GaussianProcessClassifier(
227
237
  **cleaned_up_init_args,
228
238
  )
229
239
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
230
240
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
231
241
  self._snowpark_cols: Optional[List[str]] = self.input_cols
232
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
242
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
243
+ self._autogenerated = True
233
244
 
234
245
  def _get_rand_id(self) -> str:
235
246
  """
@@ -285,54 +296,48 @@ class GaussianProcessClassifier(BaseTransformer):
285
296
  self
286
297
  """
287
298
  self._infer_input_output_cols(dataset)
288
- if isinstance(dataset, pd.DataFrame):
289
- assert self._sklearn_object is not None # keep mypy happy
290
- self._sklearn_object = self._handlers.fit_pandas(
291
- dataset,
292
- self._sklearn_object,
293
- self.input_cols,
294
- self.label_cols,
295
- self.sample_weight_col
296
- )
297
- elif isinstance(dataset, DataFrame):
298
- self._fit_snowpark(dataset)
299
- else:
300
- raise TypeError(
301
- f"Unexpected dataset type: {type(dataset)}."
302
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
303
- )
299
+ if isinstance(dataset, DataFrame):
300
+ session = dataset._session
301
+ assert session is not None # keep mypy happy
302
+ # Validate that key package version in user workspace are supported in snowflake conda channel
303
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
304
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
305
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
306
+
307
+ # Specify input columns so column pruning will be enforced
308
+ selected_cols = self._get_active_columns()
309
+ if len(selected_cols) > 0:
310
+ dataset = dataset.select(selected_cols)
311
+
312
+ self._snowpark_cols = dataset.select(self.input_cols).columns
313
+
314
+ # If we are already in a stored procedure, no need to kick off another one.
315
+ if SNOWML_SPROC_ENV in os.environ:
316
+ statement_params = telemetry.get_function_usage_statement_params(
317
+ project=_PROJECT,
318
+ subproject=_SUBPROJECT,
319
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianProcessClassifier.__class__.__name__),
320
+ api_calls=[Session.call],
321
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
322
+ )
323
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
324
+ pd_df.columns = dataset.columns
325
+ dataset = pd_df
326
+
327
+ model_trainer = ModelTrainerBuilder.build(
328
+ estimator=self._sklearn_object,
329
+ dataset=dataset,
330
+ input_cols=self.input_cols,
331
+ label_cols=self.label_cols,
332
+ sample_weight_col=self.sample_weight_col,
333
+ autogenerated=self._autogenerated,
334
+ subproject=_SUBPROJECT
335
+ )
336
+ self._sklearn_object = model_trainer.train()
304
337
  self._is_fitted = True
305
338
  self._get_model_signatures(dataset)
306
339
  return self
307
340
 
308
- def _fit_snowpark(self, dataset: DataFrame) -> None:
309
- session = dataset._session
310
- assert session is not None # keep mypy happy
311
- # Validate that key package version in user workspace are supported in snowflake conda channel
312
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
313
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
314
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
315
-
316
- # Specify input columns so column pruning will be enforced
317
- selected_cols = self._get_active_columns()
318
- if len(selected_cols) > 0:
319
- dataset = dataset.select(selected_cols)
320
-
321
- estimator = self._sklearn_object
322
- assert estimator is not None # Keep mypy happy
323
-
324
- self._snowpark_cols = dataset.select(self.input_cols).columns
325
-
326
- self._sklearn_object = self._handlers.fit_snowpark(
327
- dataset,
328
- session,
329
- estimator,
330
- ["snowflake-snowpark-python"] + self._get_dependencies(),
331
- self.input_cols,
332
- self.label_cols,
333
- self.sample_weight_col,
334
- )
335
-
336
341
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
337
342
  if self._drop_input_cols:
338
343
  return []
@@ -520,11 +525,6 @@ class GaussianProcessClassifier(BaseTransformer):
520
525
  subproject=_SUBPROJECT,
521
526
  custom_tags=dict([("autogen", True)]),
522
527
  )
523
- @telemetry.add_stmt_params_to_df(
524
- project=_PROJECT,
525
- subproject=_SUBPROJECT,
526
- custom_tags=dict([("autogen", True)]),
527
- )
528
528
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
529
529
  """Perform classification on an array of test vectors X
530
530
  For more details on this function, see [sklearn.gaussian_process.GaussianProcessClassifier.predict]
@@ -578,11 +578,6 @@ class GaussianProcessClassifier(BaseTransformer):
578
578
  subproject=_SUBPROJECT,
579
579
  custom_tags=dict([("autogen", True)]),
580
580
  )
581
- @telemetry.add_stmt_params_to_df(
582
- project=_PROJECT,
583
- subproject=_SUBPROJECT,
584
- custom_tags=dict([("autogen", True)]),
585
- )
586
581
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
587
582
  """Method not supported for this class.
588
583
 
@@ -639,7 +634,8 @@ class GaussianProcessClassifier(BaseTransformer):
639
634
  if False:
640
635
  self.fit(dataset)
641
636
  assert self._sklearn_object is not None
642
- return self._sklearn_object.labels_
637
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
638
+ return labels
643
639
  else:
644
640
  raise NotImplementedError
645
641
 
@@ -675,6 +671,7 @@ class GaussianProcessClassifier(BaseTransformer):
675
671
  output_cols = []
676
672
 
677
673
  # Make sure column names are valid snowflake identifiers.
674
+ assert output_cols is not None # Make MyPy happy
678
675
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
679
676
 
680
677
  return rv
@@ -685,11 +682,6 @@ class GaussianProcessClassifier(BaseTransformer):
685
682
  subproject=_SUBPROJECT,
686
683
  custom_tags=dict([("autogen", True)]),
687
684
  )
688
- @telemetry.add_stmt_params_to_df(
689
- project=_PROJECT,
690
- subproject=_SUBPROJECT,
691
- custom_tags=dict([("autogen", True)]),
692
- )
693
685
  def predict_proba(
694
686
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
695
687
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -732,11 +724,6 @@ class GaussianProcessClassifier(BaseTransformer):
732
724
  subproject=_SUBPROJECT,
733
725
  custom_tags=dict([("autogen", True)]),
734
726
  )
735
- @telemetry.add_stmt_params_to_df(
736
- project=_PROJECT,
737
- subproject=_SUBPROJECT,
738
- custom_tags=dict([("autogen", True)]),
739
- )
740
727
  def predict_log_proba(
741
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
742
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -775,16 +762,6 @@ class GaussianProcessClassifier(BaseTransformer):
775
762
  return output_df
776
763
 
777
764
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
778
- @telemetry.send_api_usage_telemetry(
779
- project=_PROJECT,
780
- subproject=_SUBPROJECT,
781
- custom_tags=dict([("autogen", True)]),
782
- )
783
- @telemetry.add_stmt_params_to_df(
784
- project=_PROJECT,
785
- subproject=_SUBPROJECT,
786
- custom_tags=dict([("autogen", True)]),
787
- )
788
765
  def decision_function(
789
766
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
790
767
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -885,11 +862,6 @@ class GaussianProcessClassifier(BaseTransformer):
885
862
  subproject=_SUBPROJECT,
886
863
  custom_tags=dict([("autogen", True)]),
887
864
  )
888
- @telemetry.add_stmt_params_to_df(
889
- project=_PROJECT,
890
- subproject=_SUBPROJECT,
891
- custom_tags=dict([("autogen", True)]),
892
- )
893
865
  def kneighbors(
894
866
  self,
895
867
  dataset: Union[DataFrame, pd.DataFrame],
@@ -949,9 +921,9 @@ class GaussianProcessClassifier(BaseTransformer):
949
921
  # For classifier, the type of predict is the same as the type of label
950
922
  if self._sklearn_object._estimator_type == 'classifier':
951
923
  # label columns is the desired type for output
952
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
924
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
953
925
  # rename the output columns
954
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
926
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
955
927
  self._model_signature_dict["predict"] = ModelSignature(inputs,
956
928
  ([] if self._drop_input_cols else inputs)
957
929
  + outputs)