snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MLPRegressor(BaseTransformer):
|
57
58
|
r"""Multi-layer Perceptron regressor
|
58
59
|
For more details on this class, see [sklearn.neural_network.MLPRegressor]
|
@@ -60,6 +61,51 @@ class MLPRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
|
64
110
|
The ith element represents the number of neurons in the ith
|
65
111
|
hidden layer.
|
@@ -205,42 +251,6 @@ class MLPRegressor(BaseTransformer):
|
|
205
251
|
of iterations reaches max_iter, or this number of function calls.
|
206
252
|
Note that number of function calls will be greater than or equal to
|
207
253
|
the number of iterations for the MLPRegressor.
|
208
|
-
|
209
|
-
input_cols: Optional[Union[str, List[str]]]
|
210
|
-
A string or list of strings representing column names that contain features.
|
211
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
212
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
213
|
-
parameters are considered input columns.
|
214
|
-
|
215
|
-
label_cols: Optional[Union[str, List[str]]]
|
216
|
-
A string or list of strings representing column names that contain labels.
|
217
|
-
This is a required param for estimators, as there is no way to infer these
|
218
|
-
columns. If this parameter is not specified, then object is fitted without
|
219
|
-
labels (like a transformer).
|
220
|
-
|
221
|
-
output_cols: Optional[Union[str, List[str]]]
|
222
|
-
A string or list of strings representing column names that will store the
|
223
|
-
output of predict and transform operations. The length of output_cols must
|
224
|
-
match the expected number of output columns from the specific estimator or
|
225
|
-
transformer class used.
|
226
|
-
If this parameter is not specified, output column names are derived by
|
227
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
228
|
-
column names work for estimator's predict() method, but output_cols must
|
229
|
-
be set explicitly for transformers.
|
230
|
-
|
231
|
-
sample_weight_col: Optional[str]
|
232
|
-
A string representing the column name containing the sample weights.
|
233
|
-
This argument is only required when working with weighted datasets.
|
234
|
-
|
235
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
236
|
-
A string or a list of strings indicating column names to be excluded from any
|
237
|
-
operations (such as train, transform, or inference). These specified column(s)
|
238
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
239
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
240
|
-
columns, like index columns, during training or inference.
|
241
|
-
|
242
|
-
drop_input_cols: Optional[bool], default=False
|
243
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
244
254
|
"""
|
245
255
|
|
246
256
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -284,7 +294,7 @@ class MLPRegressor(BaseTransformer):
|
|
284
294
|
self.set_passthrough_cols(passthrough_cols)
|
285
295
|
self.set_drop_input_cols(drop_input_cols)
|
286
296
|
self.set_sample_weight_col(sample_weight_col)
|
287
|
-
deps = set(
|
297
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
288
298
|
|
289
299
|
self._deps = list(deps)
|
290
300
|
|
@@ -315,13 +325,14 @@ class MLPRegressor(BaseTransformer):
|
|
315
325
|
args=init_args,
|
316
326
|
klass=sklearn.neural_network.MLPRegressor
|
317
327
|
)
|
318
|
-
self._sklearn_object = sklearn.neural_network.MLPRegressor(
|
328
|
+
self._sklearn_object: Any = sklearn.neural_network.MLPRegressor(
|
319
329
|
**cleaned_up_init_args,
|
320
330
|
)
|
321
331
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
322
332
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
323
333
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
324
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
334
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
335
|
+
self._autogenerated = True
|
325
336
|
|
326
337
|
def _get_rand_id(self) -> str:
|
327
338
|
"""
|
@@ -377,54 +388,48 @@ class MLPRegressor(BaseTransformer):
|
|
377
388
|
self
|
378
389
|
"""
|
379
390
|
self._infer_input_output_cols(dataset)
|
380
|
-
if isinstance(dataset,
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
self.
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
391
|
+
if isinstance(dataset, DataFrame):
|
392
|
+
session = dataset._session
|
393
|
+
assert session is not None # keep mypy happy
|
394
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
395
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
396
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
397
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
398
|
+
|
399
|
+
# Specify input columns so column pruning will be enforced
|
400
|
+
selected_cols = self._get_active_columns()
|
401
|
+
if len(selected_cols) > 0:
|
402
|
+
dataset = dataset.select(selected_cols)
|
403
|
+
|
404
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
405
|
+
|
406
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
407
|
+
if SNOWML_SPROC_ENV in os.environ:
|
408
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
409
|
+
project=_PROJECT,
|
410
|
+
subproject=_SUBPROJECT,
|
411
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPRegressor.__class__.__name__),
|
412
|
+
api_calls=[Session.call],
|
413
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
414
|
+
)
|
415
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
416
|
+
pd_df.columns = dataset.columns
|
417
|
+
dataset = pd_df
|
418
|
+
|
419
|
+
model_trainer = ModelTrainerBuilder.build(
|
420
|
+
estimator=self._sklearn_object,
|
421
|
+
dataset=dataset,
|
422
|
+
input_cols=self.input_cols,
|
423
|
+
label_cols=self.label_cols,
|
424
|
+
sample_weight_col=self.sample_weight_col,
|
425
|
+
autogenerated=self._autogenerated,
|
426
|
+
subproject=_SUBPROJECT
|
427
|
+
)
|
428
|
+
self._sklearn_object = model_trainer.train()
|
396
429
|
self._is_fitted = True
|
397
430
|
self._get_model_signatures(dataset)
|
398
431
|
return self
|
399
432
|
|
400
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
401
|
-
session = dataset._session
|
402
|
-
assert session is not None # keep mypy happy
|
403
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
404
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
405
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
406
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
407
|
-
|
408
|
-
# Specify input columns so column pruning will be enforced
|
409
|
-
selected_cols = self._get_active_columns()
|
410
|
-
if len(selected_cols) > 0:
|
411
|
-
dataset = dataset.select(selected_cols)
|
412
|
-
|
413
|
-
estimator = self._sklearn_object
|
414
|
-
assert estimator is not None # Keep mypy happy
|
415
|
-
|
416
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
417
|
-
|
418
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
419
|
-
dataset,
|
420
|
-
session,
|
421
|
-
estimator,
|
422
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
423
|
-
self.input_cols,
|
424
|
-
self.label_cols,
|
425
|
-
self.sample_weight_col,
|
426
|
-
)
|
427
|
-
|
428
433
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
429
434
|
if self._drop_input_cols:
|
430
435
|
return []
|
@@ -612,11 +617,6 @@ class MLPRegressor(BaseTransformer):
|
|
612
617
|
subproject=_SUBPROJECT,
|
613
618
|
custom_tags=dict([("autogen", True)]),
|
614
619
|
)
|
615
|
-
@telemetry.add_stmt_params_to_df(
|
616
|
-
project=_PROJECT,
|
617
|
-
subproject=_SUBPROJECT,
|
618
|
-
custom_tags=dict([("autogen", True)]),
|
619
|
-
)
|
620
620
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
621
621
|
"""Predict using the multi-layer perceptron model
|
622
622
|
For more details on this function, see [sklearn.neural_network.MLPRegressor.predict]
|
@@ -670,11 +670,6 @@ class MLPRegressor(BaseTransformer):
|
|
670
670
|
subproject=_SUBPROJECT,
|
671
671
|
custom_tags=dict([("autogen", True)]),
|
672
672
|
)
|
673
|
-
@telemetry.add_stmt_params_to_df(
|
674
|
-
project=_PROJECT,
|
675
|
-
subproject=_SUBPROJECT,
|
676
|
-
custom_tags=dict([("autogen", True)]),
|
677
|
-
)
|
678
673
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
679
674
|
"""Method not supported for this class.
|
680
675
|
|
@@ -731,7 +726,8 @@ class MLPRegressor(BaseTransformer):
|
|
731
726
|
if False:
|
732
727
|
self.fit(dataset)
|
733
728
|
assert self._sklearn_object is not None
|
734
|
-
|
729
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
730
|
+
return labels
|
735
731
|
else:
|
736
732
|
raise NotImplementedError
|
737
733
|
|
@@ -767,6 +763,7 @@ class MLPRegressor(BaseTransformer):
|
|
767
763
|
output_cols = []
|
768
764
|
|
769
765
|
# Make sure column names are valid snowflake identifiers.
|
766
|
+
assert output_cols is not None # Make MyPy happy
|
770
767
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
771
768
|
|
772
769
|
return rv
|
@@ -777,11 +774,6 @@ class MLPRegressor(BaseTransformer):
|
|
777
774
|
subproject=_SUBPROJECT,
|
778
775
|
custom_tags=dict([("autogen", True)]),
|
779
776
|
)
|
780
|
-
@telemetry.add_stmt_params_to_df(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
777
|
def predict_proba(
|
786
778
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
787
779
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -822,11 +814,6 @@ class MLPRegressor(BaseTransformer):
|
|
822
814
|
subproject=_SUBPROJECT,
|
823
815
|
custom_tags=dict([("autogen", True)]),
|
824
816
|
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
817
|
def predict_log_proba(
|
831
818
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
832
819
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -863,16 +850,6 @@ class MLPRegressor(BaseTransformer):
|
|
863
850
|
return output_df
|
864
851
|
|
865
852
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
866
|
-
@telemetry.send_api_usage_telemetry(
|
867
|
-
project=_PROJECT,
|
868
|
-
subproject=_SUBPROJECT,
|
869
|
-
custom_tags=dict([("autogen", True)]),
|
870
|
-
)
|
871
|
-
@telemetry.add_stmt_params_to_df(
|
872
|
-
project=_PROJECT,
|
873
|
-
subproject=_SUBPROJECT,
|
874
|
-
custom_tags=dict([("autogen", True)]),
|
875
|
-
)
|
876
853
|
def decision_function(
|
877
854
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
878
855
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -973,11 +950,6 @@ class MLPRegressor(BaseTransformer):
|
|
973
950
|
subproject=_SUBPROJECT,
|
974
951
|
custom_tags=dict([("autogen", True)]),
|
975
952
|
)
|
976
|
-
@telemetry.add_stmt_params_to_df(
|
977
|
-
project=_PROJECT,
|
978
|
-
subproject=_SUBPROJECT,
|
979
|
-
custom_tags=dict([("autogen", True)]),
|
980
|
-
)
|
981
953
|
def kneighbors(
|
982
954
|
self,
|
983
955
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1037,9 +1009,9 @@ class MLPRegressor(BaseTransformer):
|
|
1037
1009
|
# For classifier, the type of predict is the same as the type of label
|
1038
1010
|
if self._sklearn_object._estimator_type == 'classifier':
|
1039
1011
|
# label columns is the desired type for output
|
1040
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1012
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1041
1013
|
# rename the output columns
|
1042
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1014
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1043
1015
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1044
1016
|
([] if self._drop_input_cols else inputs)
|
1045
1017
|
+ outputs)
|
@@ -1,8 +1,4 @@
|
|
1
1
|
"""Disables the distributed implementation of Grid Search and Randomized Search CV"""
|
2
|
-
from snowflake.ml.modeling.
|
3
|
-
from snowflake.ml.modeling.model_selection.randomized_search_cv import (
|
4
|
-
RandomizedSearchCV,
|
5
|
-
)
|
2
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
6
3
|
|
7
|
-
|
8
|
-
RandomizedSearchCV._ENABLE_DISTRIBUTED = False
|
4
|
+
ModelTrainerBuilder._ENABLE_DISTRIBUTED = False
|
@@ -21,16 +21,25 @@ class Binarizer(base.BaseTransformer):
|
|
21
21
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html).
|
22
22
|
|
23
23
|
Args:
|
24
|
-
threshold:
|
25
|
-
|
26
|
-
|
24
|
+
threshold: float, default=0.0
|
25
|
+
Feature values below or equal to this are replaced by 0, above it by 1. Default values is 0.0.
|
26
|
+
|
27
|
+
input_cols: Optional[Union[str, Iterable[str]]], default=None
|
28
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be binarized.
|
29
|
+
|
30
|
+
output_cols: Optional[Union[str, Iterable[str]]], default=None
|
31
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
27
32
|
columns specified must match the number of input columns.
|
28
|
-
|
33
|
+
|
34
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]], default=None
|
35
|
+
A string or a list of strings indicating column names to be excluded from any
|
29
36
|
operations (such as train, transform, or inference). These specified column(s)
|
30
37
|
will remain untouched throughout the process. This option is helpful in scenarios
|
31
38
|
requiring automatic input_cols inference, but need to avoid using specific
|
32
39
|
columns, like index columns, during training or inference.
|
33
|
-
|
40
|
+
|
41
|
+
drop_input_cols: Optional[bool], default=False
|
42
|
+
Remove input columns from output if set True. False by default.
|
34
43
|
"""
|
35
44
|
|
36
45
|
def __init__(
|
@@ -108,10 +117,6 @@ class Binarizer(base.BaseTransformer):
|
|
108
117
|
project=base.PROJECT,
|
109
118
|
subproject=base.SUBPROJECT,
|
110
119
|
)
|
111
|
-
@telemetry.add_stmt_params_to_df(
|
112
|
-
project=base.PROJECT,
|
113
|
-
subproject=base.SUBPROJECT,
|
114
|
-
)
|
115
120
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
116
121
|
"""
|
117
122
|
Binarize the data. Map to 1 if it is strictly greater than the threshold, otherwise 0.
|
@@ -177,10 +177,6 @@ class KBinsDiscretizer(base.BaseTransformer):
|
|
177
177
|
project=base.PROJECT,
|
178
178
|
subproject=base.SUBPROJECT,
|
179
179
|
)
|
180
|
-
@telemetry.add_stmt_params_to_df(
|
181
|
-
project=base.PROJECT,
|
182
|
-
subproject=base.SUBPROJECT,
|
183
|
-
)
|
184
180
|
def transform(
|
185
181
|
self, dataset: Union[snowpark.DataFrame, pd.DataFrame]
|
186
182
|
) -> Union[snowpark.DataFrame, pd.DataFrame, sparse.csr_matrix]:
|
@@ -24,15 +24,22 @@ class LabelEncoder(base.BaseTransformer):
|
|
24
24
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html).
|
25
25
|
|
26
26
|
Args:
|
27
|
-
input_cols:
|
28
|
-
|
27
|
+
input_cols: Optional[Union[str, List[str]]]
|
28
|
+
The name of a column in a DataFrame to be encoded. May be a string or a list containing one string.
|
29
|
+
|
30
|
+
output_cols: Optional[Union[str, List[str]]]
|
31
|
+
The name of a column in a DataFrame where the results will be stored. May be a string or a list
|
29
32
|
containing one string.
|
30
|
-
|
33
|
+
|
34
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
35
|
+
A string or a list of strings indicating column names to be excluded from any
|
31
36
|
operations (such as train, transform, or inference). These specified column(s)
|
32
37
|
will remain untouched throughout the process. This option is helpful in scenarios
|
33
38
|
requiring automatic input_cols inference, but need to avoid using specific
|
34
39
|
columns, like index columns, during training or inference.
|
35
|
-
|
40
|
+
|
41
|
+
drop_input_cols: Optional[bool], default=False
|
42
|
+
Remove input columns from output if set True. False by default.
|
36
43
|
"""
|
37
44
|
|
38
45
|
def __init__(
|
@@ -46,19 +53,24 @@ class LabelEncoder(base.BaseTransformer):
|
|
46
53
|
Encode target labels with integers between 0 and n_classes-1.
|
47
54
|
|
48
55
|
Args:
|
49
|
-
input_cols:
|
56
|
+
input_cols: Optional[Union[str, List[str]]]
|
57
|
+
The name of a column in a DataFrame to be encoded. May be a string or a list containing one
|
50
58
|
string.
|
51
|
-
output_cols:
|
59
|
+
output_cols: Optional[Union[str, List[str]]]
|
60
|
+
The name of a column in a DataFrame where the results will be stored. May be a string or a list
|
52
61
|
containing one string.
|
53
|
-
passthrough_cols:
|
62
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
63
|
+
A string or a list of strings indicating column names to be excluded from any
|
54
64
|
operations (such as train, transform, or inference). These specified column(s)
|
55
65
|
will remain untouched throughout the process. This option is helful in scenarios
|
56
66
|
requiring automatic input_cols inference, but need to avoid using specific
|
57
67
|
columns, like index columns, during in training or inference.
|
58
|
-
drop_input_cols:
|
68
|
+
drop_input_cols: Optional[bool], default=False
|
69
|
+
Remove input columns from output if set True. False by default.
|
59
70
|
|
60
71
|
Attributes:
|
61
|
-
classes_:
|
72
|
+
classes_: Optional[type_utils.LiteralNDArrayType]
|
73
|
+
A np.ndarray that holds the label for each class.
|
62
74
|
Attributes are valid only after fit() has been called.
|
63
75
|
|
64
76
|
"""
|
@@ -126,10 +138,6 @@ class LabelEncoder(base.BaseTransformer):
|
|
126
138
|
project=base.PROJECT,
|
127
139
|
subproject=base.SUBPROJECT,
|
128
140
|
)
|
129
|
-
@telemetry.add_stmt_params_to_df(
|
130
|
-
project=base.PROJECT,
|
131
|
-
subproject=base.SUBPROJECT,
|
132
|
-
)
|
133
141
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
134
142
|
"""
|
135
143
|
Use fit result to transform snowpark dataframe or pandas dataframe. The original dataset with
|
@@ -27,19 +27,29 @@ class MaxAbsScaler(base.BaseTransformer):
|
|
27
27
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html).
|
28
28
|
|
29
29
|
Args:
|
30
|
-
input_cols:
|
31
|
-
|
30
|
+
input_cols: Optional[Union[str, List[str]]], default=None
|
31
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
|
32
|
+
|
33
|
+
output_cols: Optional[Union[str, List[str]]], default=None
|
34
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
32
35
|
columns specified must match the number of input columns.
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
36
|
+
|
37
|
+
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
38
|
+
A string or a list of strings indicating column names to be excluded from any
|
39
|
+
operations (such as train, transform, or inference). These specified column(s)
|
40
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
41
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
42
|
+
columns, like index columns, during training or inference.
|
43
|
+
|
44
|
+
drop_input_cols: Optional[bool], default=False
|
45
|
+
Remove input columns from output if set True. False by default.
|
39
46
|
|
40
47
|
Attributes:
|
41
|
-
scale_:
|
42
|
-
|
48
|
+
scale_: Dict[str, float]
|
49
|
+
dict {column_name: value} or None. Per-feature relative scaling factor.
|
50
|
+
|
51
|
+
max_abs_: Dict[str, float]
|
52
|
+
dict {column_name: value} or None. Per-feature maximum absolute value.
|
43
53
|
"""
|
44
54
|
|
45
55
|
def __init__(
|
@@ -150,10 +160,6 @@ class MaxAbsScaler(base.BaseTransformer):
|
|
150
160
|
project=base.PROJECT,
|
151
161
|
subproject=base.SUBPROJECT,
|
152
162
|
)
|
153
|
-
@telemetry.add_stmt_params_to_df(
|
154
|
-
project=base.PROJECT,
|
155
|
-
subproject=base.SUBPROJECT,
|
156
|
-
)
|
157
163
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
158
164
|
"""
|
159
165
|
Scale the data.
|
@@ -21,25 +21,45 @@ class MinMaxScaler(base.BaseTransformer):
|
|
21
21
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html).
|
22
22
|
|
23
23
|
Args:
|
24
|
-
feature_range:
|
25
|
-
|
26
|
-
|
24
|
+
feature_range: Tuple[float, float], default=(0, 1)
|
25
|
+
Desired range of transformed data (default is 0 to 1).
|
26
|
+
|
27
|
+
clip: bool, default=False
|
28
|
+
Whether to clip transformed values of held-out data to the specified feature range (default is True).
|
29
|
+
|
30
|
+
input_cols: Optional[Union[str, List[str]]], default=None
|
31
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be scaled. Each specified
|
27
32
|
input column is scaled independently and stored in the corresponding output column.
|
28
|
-
|
33
|
+
|
34
|
+
output_cols: Optional[Union[str, List[str]]], default=None
|
35
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
29
36
|
columns specified must match the number of input columns.
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
37
|
+
|
38
|
+
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
39
|
+
A string or a list of strings indicating column names to be excluded from any
|
40
|
+
operations (such as train, transform, or inference). These specified column(s)
|
41
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
42
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
43
|
+
columns, like index columns, during training or inference.
|
44
|
+
|
45
|
+
drop_input_cols: Optional[bool], default=False
|
46
|
+
Remove input columns from output if set True. False by default.
|
36
47
|
|
37
48
|
Attributes:
|
38
|
-
min_:
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
49
|
+
min_: Dict[str, float]
|
50
|
+
dict {column_name: value} or None. Per-feature adjustment for minimum.
|
51
|
+
|
52
|
+
scale_: Dict[str, float]
|
53
|
+
dict {column_name: value} or None. Per-feature relative scaling factor.
|
54
|
+
|
55
|
+
data_min_: Dict[str, float]
|
56
|
+
dict {column_name: value} or None. Per-feature minimum seen in the data.
|
57
|
+
|
58
|
+
data_max_: Dict[str, float]
|
59
|
+
dict {column_name: value} or None. Per-feature maximum seen in the data.
|
60
|
+
|
61
|
+
data_range_: Dict[str, float]
|
62
|
+
dict {column_name: value} or None. Per-feature range seen in the data as a (min, max) tuple.
|
43
63
|
"""
|
44
64
|
|
45
65
|
def __init__(
|
@@ -170,10 +190,6 @@ class MinMaxScaler(base.BaseTransformer):
|
|
170
190
|
project=base.PROJECT,
|
171
191
|
subproject=base.SUBPROJECT,
|
172
192
|
)
|
173
|
-
@telemetry.add_stmt_params_to_df(
|
174
|
-
project=base.PROJECT,
|
175
|
-
subproject=base.SUBPROJECT,
|
176
|
-
)
|
177
193
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
178
194
|
"""
|
179
195
|
Scale features according to feature_range.
|
@@ -34,11 +34,12 @@ class Normalizer(base.BaseTransformer):
|
|
34
34
|
A string or list of strings representing column names that will store the output of transform operation.
|
35
35
|
The length of `output_cols` must equal the length of `input_cols`.
|
36
36
|
|
37
|
-
passthrough_cols:
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
37
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
38
|
+
A string or a list of strings indicating column names to be excluded from any
|
39
|
+
operations (such as train, transform, or inference). These specified column(s)
|
40
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
41
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
42
|
+
columns, like index columns, during training or inference.
|
42
43
|
|
43
44
|
drop_input_cols: bool, default=False
|
44
45
|
Remove input columns from output if set `True`.
|
@@ -90,10 +91,6 @@ class Normalizer(base.BaseTransformer):
|
|
90
91
|
project=base.PROJECT,
|
91
92
|
subproject=base.SUBPROJECT,
|
92
93
|
)
|
93
|
-
@telemetry.add_stmt_params_to_df(
|
94
|
-
project=base.PROJECT,
|
95
|
-
subproject=base.SUBPROJECT,
|
96
|
-
)
|
97
94
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
98
95
|
"""
|
99
96
|
Scale each non-zero row of the input dataset to the unit norm.
|