snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class VotingClassifier(BaseTransformer):
57
58
  r"""Soft Voting/Majority Rule classifier for unfitted estimators
58
59
  For more details on this class, see [sklearn.ensemble.VotingClassifier]
@@ -60,6 +61,51 @@ class VotingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimators: list of (str, estimator) tuples
64
110
  Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones
65
111
  of those original estimators that will be stored in the class attribute
@@ -93,42 +139,6 @@ class VotingClassifier(BaseTransformer):
93
139
  verbose: bool, default=False
94
140
  If True, the time elapsed while fitting will be printed as it
95
141
  is completed.
96
-
97
- input_cols: Optional[Union[str, List[str]]]
98
- A string or list of strings representing column names that contain features.
99
- If this parameter is not specified, all columns in the input DataFrame except
100
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
101
- parameters are considered input columns.
102
-
103
- label_cols: Optional[Union[str, List[str]]]
104
- A string or list of strings representing column names that contain labels.
105
- This is a required param for estimators, as there is no way to infer these
106
- columns. If this parameter is not specified, then object is fitted without
107
- labels (like a transformer).
108
-
109
- output_cols: Optional[Union[str, List[str]]]
110
- A string or list of strings representing column names that will store the
111
- output of predict and transform operations. The length of output_cols must
112
- match the expected number of output columns from the specific estimator or
113
- transformer class used.
114
- If this parameter is not specified, output column names are derived by
115
- adding an OUTPUT_ prefix to the label column names. These inferred output
116
- column names work for estimator's predict() method, but output_cols must
117
- be set explicitly for transformers.
118
-
119
- sample_weight_col: Optional[str]
120
- A string representing the column name containing the sample weights.
121
- This argument is only required when working with weighted datasets.
122
-
123
- passthrough_cols: Optional[Union[str, List[str]]]
124
- A string or a list of strings indicating column names to be excluded from any
125
- operations (such as train, transform, or inference). These specified column(s)
126
- will remain untouched throughout the process. This option is helpful in scenarios
127
- requiring automatic input_cols inference, but need to avoid using specific
128
- columns, like index columns, during training or inference.
129
-
130
- drop_input_cols: Optional[bool], default=False
131
- If set, the response of predict(), transform() methods will not contain input columns.
132
142
  """
133
143
 
134
144
  def __init__( # type: ignore[no-untyped-def]
@@ -155,7 +165,7 @@ class VotingClassifier(BaseTransformer):
155
165
  self.set_passthrough_cols(passthrough_cols)
156
166
  self.set_drop_input_cols(drop_input_cols)
157
167
  self.set_sample_weight_col(sample_weight_col)
158
- deps = set(SklearnWrapperProvider().dependencies)
168
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
159
169
  deps = deps | gather_dependencies(estimators)
160
170
  self._deps = list(deps)
161
171
  estimators = transform_snowml_obj_to_sklearn_obj(estimators)
@@ -169,13 +179,14 @@ class VotingClassifier(BaseTransformer):
169
179
  args=init_args,
170
180
  klass=sklearn.ensemble.VotingClassifier
171
181
  )
172
- self._sklearn_object = sklearn.ensemble.VotingClassifier(
182
+ self._sklearn_object: Any = sklearn.ensemble.VotingClassifier(
173
183
  **cleaned_up_init_args,
174
184
  )
175
185
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
176
186
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
177
187
  self._snowpark_cols: Optional[List[str]] = self.input_cols
178
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
188
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
189
+ self._autogenerated = True
179
190
 
180
191
  def _get_rand_id(self) -> str:
181
192
  """
@@ -231,54 +242,48 @@ class VotingClassifier(BaseTransformer):
231
242
  self
232
243
  """
233
244
  self._infer_input_output_cols(dataset)
234
- if isinstance(dataset, pd.DataFrame):
235
- assert self._sklearn_object is not None # keep mypy happy
236
- self._sklearn_object = self._handlers.fit_pandas(
237
- dataset,
238
- self._sklearn_object,
239
- self.input_cols,
240
- self.label_cols,
241
- self.sample_weight_col
242
- )
243
- elif isinstance(dataset, DataFrame):
244
- self._fit_snowpark(dataset)
245
- else:
246
- raise TypeError(
247
- f"Unexpected dataset type: {type(dataset)}."
248
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
249
- )
245
+ if isinstance(dataset, DataFrame):
246
+ session = dataset._session
247
+ assert session is not None # keep mypy happy
248
+ # Validate that key package version in user workspace are supported in snowflake conda channel
249
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
250
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
251
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
252
+
253
+ # Specify input columns so column pruning will be enforced
254
+ selected_cols = self._get_active_columns()
255
+ if len(selected_cols) > 0:
256
+ dataset = dataset.select(selected_cols)
257
+
258
+ self._snowpark_cols = dataset.select(self.input_cols).columns
259
+
260
+ # If we are already in a stored procedure, no need to kick off another one.
261
+ if SNOWML_SPROC_ENV in os.environ:
262
+ statement_params = telemetry.get_function_usage_statement_params(
263
+ project=_PROJECT,
264
+ subproject=_SUBPROJECT,
265
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingClassifier.__class__.__name__),
266
+ api_calls=[Session.call],
267
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
268
+ )
269
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
270
+ pd_df.columns = dataset.columns
271
+ dataset = pd_df
272
+
273
+ model_trainer = ModelTrainerBuilder.build(
274
+ estimator=self._sklearn_object,
275
+ dataset=dataset,
276
+ input_cols=self.input_cols,
277
+ label_cols=self.label_cols,
278
+ sample_weight_col=self.sample_weight_col,
279
+ autogenerated=self._autogenerated,
280
+ subproject=_SUBPROJECT
281
+ )
282
+ self._sklearn_object = model_trainer.train()
250
283
  self._is_fitted = True
251
284
  self._get_model_signatures(dataset)
252
285
  return self
253
286
 
254
- def _fit_snowpark(self, dataset: DataFrame) -> None:
255
- session = dataset._session
256
- assert session is not None # keep mypy happy
257
- # Validate that key package version in user workspace are supported in snowflake conda channel
258
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
259
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
260
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
261
-
262
- # Specify input columns so column pruning will be enforced
263
- selected_cols = self._get_active_columns()
264
- if len(selected_cols) > 0:
265
- dataset = dataset.select(selected_cols)
266
-
267
- estimator = self._sklearn_object
268
- assert estimator is not None # Keep mypy happy
269
-
270
- self._snowpark_cols = dataset.select(self.input_cols).columns
271
-
272
- self._sklearn_object = self._handlers.fit_snowpark(
273
- dataset,
274
- session,
275
- estimator,
276
- ["snowflake-snowpark-python"] + self._get_dependencies(),
277
- self.input_cols,
278
- self.label_cols,
279
- self.sample_weight_col,
280
- )
281
-
282
287
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
283
288
  if self._drop_input_cols:
284
289
  return []
@@ -466,11 +471,6 @@ class VotingClassifier(BaseTransformer):
466
471
  subproject=_SUBPROJECT,
467
472
  custom_tags=dict([("autogen", True)]),
468
473
  )
469
- @telemetry.add_stmt_params_to_df(
470
- project=_PROJECT,
471
- subproject=_SUBPROJECT,
472
- custom_tags=dict([("autogen", True)]),
473
- )
474
474
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
475
475
  """Predict class labels for X
476
476
  For more details on this function, see [sklearn.ensemble.VotingClassifier.predict]
@@ -524,11 +524,6 @@ class VotingClassifier(BaseTransformer):
524
524
  subproject=_SUBPROJECT,
525
525
  custom_tags=dict([("autogen", True)]),
526
526
  )
527
- @telemetry.add_stmt_params_to_df(
528
- project=_PROJECT,
529
- subproject=_SUBPROJECT,
530
- custom_tags=dict([("autogen", True)]),
531
- )
532
527
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
533
528
  """Return class labels or probabilities for X for each estimator
534
529
  For more details on this function, see [sklearn.ensemble.VotingClassifier.transform]
@@ -587,7 +582,8 @@ class VotingClassifier(BaseTransformer):
587
582
  if False:
588
583
  self.fit(dataset)
589
584
  assert self._sklearn_object is not None
590
- return self._sklearn_object.labels_
585
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
586
+ return labels
591
587
  else:
592
588
  raise NotImplementedError
593
589
 
@@ -623,6 +619,7 @@ class VotingClassifier(BaseTransformer):
623
619
  output_cols = []
624
620
 
625
621
  # Make sure column names are valid snowflake identifiers.
622
+ assert output_cols is not None # Make MyPy happy
626
623
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
627
624
 
628
625
  return rv
@@ -633,11 +630,6 @@ class VotingClassifier(BaseTransformer):
633
630
  subproject=_SUBPROJECT,
634
631
  custom_tags=dict([("autogen", True)]),
635
632
  )
636
- @telemetry.add_stmt_params_to_df(
637
- project=_PROJECT,
638
- subproject=_SUBPROJECT,
639
- custom_tags=dict([("autogen", True)]),
640
- )
641
633
  def predict_proba(
642
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
643
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -680,11 +672,6 @@ class VotingClassifier(BaseTransformer):
680
672
  subproject=_SUBPROJECT,
681
673
  custom_tags=dict([("autogen", True)]),
682
674
  )
683
- @telemetry.add_stmt_params_to_df(
684
- project=_PROJECT,
685
- subproject=_SUBPROJECT,
686
- custom_tags=dict([("autogen", True)]),
687
- )
688
675
  def predict_log_proba(
689
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
690
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -723,16 +710,6 @@ class VotingClassifier(BaseTransformer):
723
710
  return output_df
724
711
 
725
712
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
726
- @telemetry.send_api_usage_telemetry(
727
- project=_PROJECT,
728
- subproject=_SUBPROJECT,
729
- custom_tags=dict([("autogen", True)]),
730
- )
731
- @telemetry.add_stmt_params_to_df(
732
- project=_PROJECT,
733
- subproject=_SUBPROJECT,
734
- custom_tags=dict([("autogen", True)]),
735
- )
736
713
  def decision_function(
737
714
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
738
715
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -833,11 +810,6 @@ class VotingClassifier(BaseTransformer):
833
810
  subproject=_SUBPROJECT,
834
811
  custom_tags=dict([("autogen", True)]),
835
812
  )
836
- @telemetry.add_stmt_params_to_df(
837
- project=_PROJECT,
838
- subproject=_SUBPROJECT,
839
- custom_tags=dict([("autogen", True)]),
840
- )
841
813
  def kneighbors(
842
814
  self,
843
815
  dataset: Union[DataFrame, pd.DataFrame],
@@ -897,9 +869,9 @@ class VotingClassifier(BaseTransformer):
897
869
  # For classifier, the type of predict is the same as the type of label
898
870
  if self._sklearn_object._estimator_type == 'classifier':
899
871
  # label columns is the desired type for output
900
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
872
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
901
873
  # rename the output columns
902
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
874
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
903
875
  self._model_signature_dict["predict"] = ModelSignature(inputs,
904
876
  ([] if self._drop_input_cols else inputs)
905
877
  + outputs)