snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class VotingClassifier(BaseTransformer):
|
57
58
|
r"""Soft Voting/Majority Rule classifier for unfitted estimators
|
58
59
|
For more details on this class, see [sklearn.ensemble.VotingClassifier]
|
@@ -60,6 +61,51 @@ class VotingClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimators: list of (str, estimator) tuples
|
64
110
|
Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones
|
65
111
|
of those original estimators that will be stored in the class attribute
|
@@ -93,42 +139,6 @@ class VotingClassifier(BaseTransformer):
|
|
93
139
|
verbose: bool, default=False
|
94
140
|
If True, the time elapsed while fitting will be printed as it
|
95
141
|
is completed.
|
96
|
-
|
97
|
-
input_cols: Optional[Union[str, List[str]]]
|
98
|
-
A string or list of strings representing column names that contain features.
|
99
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
100
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
101
|
-
parameters are considered input columns.
|
102
|
-
|
103
|
-
label_cols: Optional[Union[str, List[str]]]
|
104
|
-
A string or list of strings representing column names that contain labels.
|
105
|
-
This is a required param for estimators, as there is no way to infer these
|
106
|
-
columns. If this parameter is not specified, then object is fitted without
|
107
|
-
labels (like a transformer).
|
108
|
-
|
109
|
-
output_cols: Optional[Union[str, List[str]]]
|
110
|
-
A string or list of strings representing column names that will store the
|
111
|
-
output of predict and transform operations. The length of output_cols must
|
112
|
-
match the expected number of output columns from the specific estimator or
|
113
|
-
transformer class used.
|
114
|
-
If this parameter is not specified, output column names are derived by
|
115
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
116
|
-
column names work for estimator's predict() method, but output_cols must
|
117
|
-
be set explicitly for transformers.
|
118
|
-
|
119
|
-
sample_weight_col: Optional[str]
|
120
|
-
A string representing the column name containing the sample weights.
|
121
|
-
This argument is only required when working with weighted datasets.
|
122
|
-
|
123
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or a list of strings indicating column names to be excluded from any
|
125
|
-
operations (such as train, transform, or inference). These specified column(s)
|
126
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
127
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
128
|
-
columns, like index columns, during training or inference.
|
129
|
-
|
130
|
-
drop_input_cols: Optional[bool], default=False
|
131
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
132
142
|
"""
|
133
143
|
|
134
144
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -155,7 +165,7 @@ class VotingClassifier(BaseTransformer):
|
|
155
165
|
self.set_passthrough_cols(passthrough_cols)
|
156
166
|
self.set_drop_input_cols(drop_input_cols)
|
157
167
|
self.set_sample_weight_col(sample_weight_col)
|
158
|
-
deps = set(
|
168
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
159
169
|
deps = deps | gather_dependencies(estimators)
|
160
170
|
self._deps = list(deps)
|
161
171
|
estimators = transform_snowml_obj_to_sklearn_obj(estimators)
|
@@ -169,13 +179,14 @@ class VotingClassifier(BaseTransformer):
|
|
169
179
|
args=init_args,
|
170
180
|
klass=sklearn.ensemble.VotingClassifier
|
171
181
|
)
|
172
|
-
self._sklearn_object = sklearn.ensemble.VotingClassifier(
|
182
|
+
self._sklearn_object: Any = sklearn.ensemble.VotingClassifier(
|
173
183
|
**cleaned_up_init_args,
|
174
184
|
)
|
175
185
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
176
186
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
177
187
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
178
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
188
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
189
|
+
self._autogenerated = True
|
179
190
|
|
180
191
|
def _get_rand_id(self) -> str:
|
181
192
|
"""
|
@@ -231,54 +242,48 @@ class VotingClassifier(BaseTransformer):
|
|
231
242
|
self
|
232
243
|
"""
|
233
244
|
self._infer_input_output_cols(dataset)
|
234
|
-
if isinstance(dataset,
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
self.
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
245
|
+
if isinstance(dataset, DataFrame):
|
246
|
+
session = dataset._session
|
247
|
+
assert session is not None # keep mypy happy
|
248
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
+
|
253
|
+
# Specify input columns so column pruning will be enforced
|
254
|
+
selected_cols = self._get_active_columns()
|
255
|
+
if len(selected_cols) > 0:
|
256
|
+
dataset = dataset.select(selected_cols)
|
257
|
+
|
258
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
259
|
+
|
260
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
261
|
+
if SNOWML_SPROC_ENV in os.environ:
|
262
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
263
|
+
project=_PROJECT,
|
264
|
+
subproject=_SUBPROJECT,
|
265
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingClassifier.__class__.__name__),
|
266
|
+
api_calls=[Session.call],
|
267
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
268
|
+
)
|
269
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
270
|
+
pd_df.columns = dataset.columns
|
271
|
+
dataset = pd_df
|
272
|
+
|
273
|
+
model_trainer = ModelTrainerBuilder.build(
|
274
|
+
estimator=self._sklearn_object,
|
275
|
+
dataset=dataset,
|
276
|
+
input_cols=self.input_cols,
|
277
|
+
label_cols=self.label_cols,
|
278
|
+
sample_weight_col=self.sample_weight_col,
|
279
|
+
autogenerated=self._autogenerated,
|
280
|
+
subproject=_SUBPROJECT
|
281
|
+
)
|
282
|
+
self._sklearn_object = model_trainer.train()
|
250
283
|
self._is_fitted = True
|
251
284
|
self._get_model_signatures(dataset)
|
252
285
|
return self
|
253
286
|
|
254
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
255
|
-
session = dataset._session
|
256
|
-
assert session is not None # keep mypy happy
|
257
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
258
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
259
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
260
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
261
|
-
|
262
|
-
# Specify input columns so column pruning will be enforced
|
263
|
-
selected_cols = self._get_active_columns()
|
264
|
-
if len(selected_cols) > 0:
|
265
|
-
dataset = dataset.select(selected_cols)
|
266
|
-
|
267
|
-
estimator = self._sklearn_object
|
268
|
-
assert estimator is not None # Keep mypy happy
|
269
|
-
|
270
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
|
-
|
272
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
273
|
-
dataset,
|
274
|
-
session,
|
275
|
-
estimator,
|
276
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
277
|
-
self.input_cols,
|
278
|
-
self.label_cols,
|
279
|
-
self.sample_weight_col,
|
280
|
-
)
|
281
|
-
|
282
287
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
283
288
|
if self._drop_input_cols:
|
284
289
|
return []
|
@@ -466,11 +471,6 @@ class VotingClassifier(BaseTransformer):
|
|
466
471
|
subproject=_SUBPROJECT,
|
467
472
|
custom_tags=dict([("autogen", True)]),
|
468
473
|
)
|
469
|
-
@telemetry.add_stmt_params_to_df(
|
470
|
-
project=_PROJECT,
|
471
|
-
subproject=_SUBPROJECT,
|
472
|
-
custom_tags=dict([("autogen", True)]),
|
473
|
-
)
|
474
474
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
475
475
|
"""Predict class labels for X
|
476
476
|
For more details on this function, see [sklearn.ensemble.VotingClassifier.predict]
|
@@ -524,11 +524,6 @@ class VotingClassifier(BaseTransformer):
|
|
524
524
|
subproject=_SUBPROJECT,
|
525
525
|
custom_tags=dict([("autogen", True)]),
|
526
526
|
)
|
527
|
-
@telemetry.add_stmt_params_to_df(
|
528
|
-
project=_PROJECT,
|
529
|
-
subproject=_SUBPROJECT,
|
530
|
-
custom_tags=dict([("autogen", True)]),
|
531
|
-
)
|
532
527
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
533
528
|
"""Return class labels or probabilities for X for each estimator
|
534
529
|
For more details on this function, see [sklearn.ensemble.VotingClassifier.transform]
|
@@ -587,7 +582,8 @@ class VotingClassifier(BaseTransformer):
|
|
587
582
|
if False:
|
588
583
|
self.fit(dataset)
|
589
584
|
assert self._sklearn_object is not None
|
590
|
-
|
585
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
586
|
+
return labels
|
591
587
|
else:
|
592
588
|
raise NotImplementedError
|
593
589
|
|
@@ -623,6 +619,7 @@ class VotingClassifier(BaseTransformer):
|
|
623
619
|
output_cols = []
|
624
620
|
|
625
621
|
# Make sure column names are valid snowflake identifiers.
|
622
|
+
assert output_cols is not None # Make MyPy happy
|
626
623
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
627
624
|
|
628
625
|
return rv
|
@@ -633,11 +630,6 @@ class VotingClassifier(BaseTransformer):
|
|
633
630
|
subproject=_SUBPROJECT,
|
634
631
|
custom_tags=dict([("autogen", True)]),
|
635
632
|
)
|
636
|
-
@telemetry.add_stmt_params_to_df(
|
637
|
-
project=_PROJECT,
|
638
|
-
subproject=_SUBPROJECT,
|
639
|
-
custom_tags=dict([("autogen", True)]),
|
640
|
-
)
|
641
633
|
def predict_proba(
|
642
634
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
643
635
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -680,11 +672,6 @@ class VotingClassifier(BaseTransformer):
|
|
680
672
|
subproject=_SUBPROJECT,
|
681
673
|
custom_tags=dict([("autogen", True)]),
|
682
674
|
)
|
683
|
-
@telemetry.add_stmt_params_to_df(
|
684
|
-
project=_PROJECT,
|
685
|
-
subproject=_SUBPROJECT,
|
686
|
-
custom_tags=dict([("autogen", True)]),
|
687
|
-
)
|
688
675
|
def predict_log_proba(
|
689
676
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
690
677
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -723,16 +710,6 @@ class VotingClassifier(BaseTransformer):
|
|
723
710
|
return output_df
|
724
711
|
|
725
712
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
726
|
-
@telemetry.send_api_usage_telemetry(
|
727
|
-
project=_PROJECT,
|
728
|
-
subproject=_SUBPROJECT,
|
729
|
-
custom_tags=dict([("autogen", True)]),
|
730
|
-
)
|
731
|
-
@telemetry.add_stmt_params_to_df(
|
732
|
-
project=_PROJECT,
|
733
|
-
subproject=_SUBPROJECT,
|
734
|
-
custom_tags=dict([("autogen", True)]),
|
735
|
-
)
|
736
713
|
def decision_function(
|
737
714
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
738
715
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -833,11 +810,6 @@ class VotingClassifier(BaseTransformer):
|
|
833
810
|
subproject=_SUBPROJECT,
|
834
811
|
custom_tags=dict([("autogen", True)]),
|
835
812
|
)
|
836
|
-
@telemetry.add_stmt_params_to_df(
|
837
|
-
project=_PROJECT,
|
838
|
-
subproject=_SUBPROJECT,
|
839
|
-
custom_tags=dict([("autogen", True)]),
|
840
|
-
)
|
841
813
|
def kneighbors(
|
842
814
|
self,
|
843
815
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -897,9 +869,9 @@ class VotingClassifier(BaseTransformer):
|
|
897
869
|
# For classifier, the type of predict is the same as the type of label
|
898
870
|
if self._sklearn_object._estimator_type == 'classifier':
|
899
871
|
# label columns is the desired type for output
|
900
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
872
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
901
873
|
# rename the output columns
|
902
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
874
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
903
875
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
904
876
|
([] if self._drop_input_cols else inputs)
|
905
877
|
+ outputs)
|