snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Lasso(BaseTransformer):
|
57
58
|
r"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
|
58
59
|
For more details on this class, see [sklearn.linear_model.Lasso]
|
@@ -60,6 +61,51 @@ class Lasso(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the L1 term, controlling regularization
|
65
111
|
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
|
@@ -110,42 +156,6 @@ class Lasso(BaseTransformer):
|
|
110
156
|
rather than looping over features sequentially by default. This
|
111
157
|
(setting to 'random') often leads to significantly faster convergence
|
112
158
|
especially when tol is higher than 1e-4.
|
113
|
-
|
114
|
-
input_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain features.
|
116
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
117
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
118
|
-
parameters are considered input columns.
|
119
|
-
|
120
|
-
label_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that contain labels.
|
122
|
-
This is a required param for estimators, as there is no way to infer these
|
123
|
-
columns. If this parameter is not specified, then object is fitted without
|
124
|
-
labels (like a transformer).
|
125
|
-
|
126
|
-
output_cols: Optional[Union[str, List[str]]]
|
127
|
-
A string or list of strings representing column names that will store the
|
128
|
-
output of predict and transform operations. The length of output_cols must
|
129
|
-
match the expected number of output columns from the specific estimator or
|
130
|
-
transformer class used.
|
131
|
-
If this parameter is not specified, output column names are derived by
|
132
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
133
|
-
column names work for estimator's predict() method, but output_cols must
|
134
|
-
be set explicitly for transformers.
|
135
|
-
|
136
|
-
sample_weight_col: Optional[str]
|
137
|
-
A string representing the column name containing the sample weights.
|
138
|
-
This argument is only required when working with weighted datasets.
|
139
|
-
|
140
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or a list of strings indicating column names to be excluded from any
|
142
|
-
operations (such as train, transform, or inference). These specified column(s)
|
143
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
144
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
145
|
-
columns, like index columns, during training or inference.
|
146
|
-
|
147
|
-
drop_input_cols: Optional[bool], default=False
|
148
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
149
159
|
"""
|
150
160
|
|
151
161
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -176,7 +186,7 @@ class Lasso(BaseTransformer):
|
|
176
186
|
self.set_passthrough_cols(passthrough_cols)
|
177
187
|
self.set_drop_input_cols(drop_input_cols)
|
178
188
|
self.set_sample_weight_col(sample_weight_col)
|
179
|
-
deps = set(
|
189
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
180
190
|
|
181
191
|
self._deps = list(deps)
|
182
192
|
|
@@ -194,13 +204,14 @@ class Lasso(BaseTransformer):
|
|
194
204
|
args=init_args,
|
195
205
|
klass=sklearn.linear_model.Lasso
|
196
206
|
)
|
197
|
-
self._sklearn_object = sklearn.linear_model.Lasso(
|
207
|
+
self._sklearn_object: Any = sklearn.linear_model.Lasso(
|
198
208
|
**cleaned_up_init_args,
|
199
209
|
)
|
200
210
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
201
211
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
202
212
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
203
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
213
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
214
|
+
self._autogenerated = True
|
204
215
|
|
205
216
|
def _get_rand_id(self) -> str:
|
206
217
|
"""
|
@@ -256,54 +267,48 @@ class Lasso(BaseTransformer):
|
|
256
267
|
self
|
257
268
|
"""
|
258
269
|
self._infer_input_output_cols(dataset)
|
259
|
-
if isinstance(dataset,
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
self.
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
270
|
+
if isinstance(dataset, DataFrame):
|
271
|
+
session = dataset._session
|
272
|
+
assert session is not None # keep mypy happy
|
273
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
+
|
278
|
+
# Specify input columns so column pruning will be enforced
|
279
|
+
selected_cols = self._get_active_columns()
|
280
|
+
if len(selected_cols) > 0:
|
281
|
+
dataset = dataset.select(selected_cols)
|
282
|
+
|
283
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
|
+
|
285
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
|
+
if SNOWML_SPROC_ENV in os.environ:
|
287
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
288
|
+
project=_PROJECT,
|
289
|
+
subproject=_SUBPROJECT,
|
290
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lasso.__class__.__name__),
|
291
|
+
api_calls=[Session.call],
|
292
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
|
+
)
|
294
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
295
|
+
pd_df.columns = dataset.columns
|
296
|
+
dataset = pd_df
|
297
|
+
|
298
|
+
model_trainer = ModelTrainerBuilder.build(
|
299
|
+
estimator=self._sklearn_object,
|
300
|
+
dataset=dataset,
|
301
|
+
input_cols=self.input_cols,
|
302
|
+
label_cols=self.label_cols,
|
303
|
+
sample_weight_col=self.sample_weight_col,
|
304
|
+
autogenerated=self._autogenerated,
|
305
|
+
subproject=_SUBPROJECT
|
306
|
+
)
|
307
|
+
self._sklearn_object = model_trainer.train()
|
275
308
|
self._is_fitted = True
|
276
309
|
self._get_model_signatures(dataset)
|
277
310
|
return self
|
278
311
|
|
279
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
280
|
-
session = dataset._session
|
281
|
-
assert session is not None # keep mypy happy
|
282
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
283
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
284
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
285
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
286
|
-
|
287
|
-
# Specify input columns so column pruning will be enforced
|
288
|
-
selected_cols = self._get_active_columns()
|
289
|
-
if len(selected_cols) > 0:
|
290
|
-
dataset = dataset.select(selected_cols)
|
291
|
-
|
292
|
-
estimator = self._sklearn_object
|
293
|
-
assert estimator is not None # Keep mypy happy
|
294
|
-
|
295
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
296
|
-
|
297
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
298
|
-
dataset,
|
299
|
-
session,
|
300
|
-
estimator,
|
301
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
302
|
-
self.input_cols,
|
303
|
-
self.label_cols,
|
304
|
-
self.sample_weight_col,
|
305
|
-
)
|
306
|
-
|
307
312
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
308
313
|
if self._drop_input_cols:
|
309
314
|
return []
|
@@ -491,11 +496,6 @@ class Lasso(BaseTransformer):
|
|
491
496
|
subproject=_SUBPROJECT,
|
492
497
|
custom_tags=dict([("autogen", True)]),
|
493
498
|
)
|
494
|
-
@telemetry.add_stmt_params_to_df(
|
495
|
-
project=_PROJECT,
|
496
|
-
subproject=_SUBPROJECT,
|
497
|
-
custom_tags=dict([("autogen", True)]),
|
498
|
-
)
|
499
499
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
500
500
|
"""Predict using the linear model
|
501
501
|
For more details on this function, see [sklearn.linear_model.Lasso.predict]
|
@@ -549,11 +549,6 @@ class Lasso(BaseTransformer):
|
|
549
549
|
subproject=_SUBPROJECT,
|
550
550
|
custom_tags=dict([("autogen", True)]),
|
551
551
|
)
|
552
|
-
@telemetry.add_stmt_params_to_df(
|
553
|
-
project=_PROJECT,
|
554
|
-
subproject=_SUBPROJECT,
|
555
|
-
custom_tags=dict([("autogen", True)]),
|
556
|
-
)
|
557
552
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
558
553
|
"""Method not supported for this class.
|
559
554
|
|
@@ -610,7 +605,8 @@ class Lasso(BaseTransformer):
|
|
610
605
|
if False:
|
611
606
|
self.fit(dataset)
|
612
607
|
assert self._sklearn_object is not None
|
613
|
-
|
608
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
609
|
+
return labels
|
614
610
|
else:
|
615
611
|
raise NotImplementedError
|
616
612
|
|
@@ -646,6 +642,7 @@ class Lasso(BaseTransformer):
|
|
646
642
|
output_cols = []
|
647
643
|
|
648
644
|
# Make sure column names are valid snowflake identifiers.
|
645
|
+
assert output_cols is not None # Make MyPy happy
|
649
646
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
650
647
|
|
651
648
|
return rv
|
@@ -656,11 +653,6 @@ class Lasso(BaseTransformer):
|
|
656
653
|
subproject=_SUBPROJECT,
|
657
654
|
custom_tags=dict([("autogen", True)]),
|
658
655
|
)
|
659
|
-
@telemetry.add_stmt_params_to_df(
|
660
|
-
project=_PROJECT,
|
661
|
-
subproject=_SUBPROJECT,
|
662
|
-
custom_tags=dict([("autogen", True)]),
|
663
|
-
)
|
664
656
|
def predict_proba(
|
665
657
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
666
658
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -701,11 +693,6 @@ class Lasso(BaseTransformer):
|
|
701
693
|
subproject=_SUBPROJECT,
|
702
694
|
custom_tags=dict([("autogen", True)]),
|
703
695
|
)
|
704
|
-
@telemetry.add_stmt_params_to_df(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
696
|
def predict_log_proba(
|
710
697
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
711
698
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -742,16 +729,6 @@ class Lasso(BaseTransformer):
|
|
742
729
|
return output_df
|
743
730
|
|
744
731
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
745
|
-
@telemetry.send_api_usage_telemetry(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
|
-
@telemetry.add_stmt_params_to_df(
|
751
|
-
project=_PROJECT,
|
752
|
-
subproject=_SUBPROJECT,
|
753
|
-
custom_tags=dict([("autogen", True)]),
|
754
|
-
)
|
755
732
|
def decision_function(
|
756
733
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
757
734
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -852,11 +829,6 @@ class Lasso(BaseTransformer):
|
|
852
829
|
subproject=_SUBPROJECT,
|
853
830
|
custom_tags=dict([("autogen", True)]),
|
854
831
|
)
|
855
|
-
@telemetry.add_stmt_params_to_df(
|
856
|
-
project=_PROJECT,
|
857
|
-
subproject=_SUBPROJECT,
|
858
|
-
custom_tags=dict([("autogen", True)]),
|
859
|
-
)
|
860
832
|
def kneighbors(
|
861
833
|
self,
|
862
834
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -916,9 +888,9 @@ class Lasso(BaseTransformer):
|
|
916
888
|
# For classifier, the type of predict is the same as the type of label
|
917
889
|
if self._sklearn_object._estimator_type == 'classifier':
|
918
890
|
# label columns is the desired type for output
|
919
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
891
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
920
892
|
# rename the output columns
|
921
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
893
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
922
894
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
923
895
|
([] if self._drop_input_cols else inputs)
|
924
896
|
+ outputs)
|