snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SGDRegressor(BaseTransformer):
|
57
58
|
r"""Linear model fitted by minimizing a regularized empirical loss with SGD
|
58
59
|
For more details on this class, see [sklearn.linear_model.SGDRegressor]
|
@@ -60,6 +61,51 @@ class SGDRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: str, default='squared_error'
|
64
110
|
The loss function to be used. The possible values are 'squared_error',
|
65
111
|
'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'
|
@@ -184,42 +230,6 @@ class SGDRegressor(BaseTransformer):
|
|
184
230
|
an int greater than 1, averaging will begin once the total number of
|
185
231
|
samples seen reaches `average`. So ``average=10`` will begin
|
186
232
|
averaging after seeing 10 samples.
|
187
|
-
|
188
|
-
input_cols: Optional[Union[str, List[str]]]
|
189
|
-
A string or list of strings representing column names that contain features.
|
190
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
191
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
192
|
-
parameters are considered input columns.
|
193
|
-
|
194
|
-
label_cols: Optional[Union[str, List[str]]]
|
195
|
-
A string or list of strings representing column names that contain labels.
|
196
|
-
This is a required param for estimators, as there is no way to infer these
|
197
|
-
columns. If this parameter is not specified, then object is fitted without
|
198
|
-
labels (like a transformer).
|
199
|
-
|
200
|
-
output_cols: Optional[Union[str, List[str]]]
|
201
|
-
A string or list of strings representing column names that will store the
|
202
|
-
output of predict and transform operations. The length of output_cols must
|
203
|
-
match the expected number of output columns from the specific estimator or
|
204
|
-
transformer class used.
|
205
|
-
If this parameter is not specified, output column names are derived by
|
206
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
207
|
-
column names work for estimator's predict() method, but output_cols must
|
208
|
-
be set explicitly for transformers.
|
209
|
-
|
210
|
-
sample_weight_col: Optional[str]
|
211
|
-
A string representing the column name containing the sample weights.
|
212
|
-
This argument is only required when working with weighted datasets.
|
213
|
-
|
214
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
215
|
-
A string or a list of strings indicating column names to be excluded from any
|
216
|
-
operations (such as train, transform, or inference). These specified column(s)
|
217
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
218
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
219
|
-
columns, like index columns, during training or inference.
|
220
|
-
|
221
|
-
drop_input_cols: Optional[bool], default=False
|
222
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
223
233
|
"""
|
224
234
|
|
225
235
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -259,7 +269,7 @@ class SGDRegressor(BaseTransformer):
|
|
259
269
|
self.set_passthrough_cols(passthrough_cols)
|
260
270
|
self.set_drop_input_cols(drop_input_cols)
|
261
271
|
self.set_sample_weight_col(sample_weight_col)
|
262
|
-
deps = set(
|
272
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
263
273
|
|
264
274
|
self._deps = list(deps)
|
265
275
|
|
@@ -286,13 +296,14 @@ class SGDRegressor(BaseTransformer):
|
|
286
296
|
args=init_args,
|
287
297
|
klass=sklearn.linear_model.SGDRegressor
|
288
298
|
)
|
289
|
-
self._sklearn_object = sklearn.linear_model.SGDRegressor(
|
299
|
+
self._sklearn_object: Any = sklearn.linear_model.SGDRegressor(
|
290
300
|
**cleaned_up_init_args,
|
291
301
|
)
|
292
302
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
293
303
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
294
304
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
295
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
305
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
306
|
+
self._autogenerated = True
|
296
307
|
|
297
308
|
def _get_rand_id(self) -> str:
|
298
309
|
"""
|
@@ -348,54 +359,48 @@ class SGDRegressor(BaseTransformer):
|
|
348
359
|
self
|
349
360
|
"""
|
350
361
|
self._infer_input_output_cols(dataset)
|
351
|
-
if isinstance(dataset,
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
self.
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
362
|
+
if isinstance(dataset, DataFrame):
|
363
|
+
session = dataset._session
|
364
|
+
assert session is not None # keep mypy happy
|
365
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
366
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
367
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
368
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
369
|
+
|
370
|
+
# Specify input columns so column pruning will be enforced
|
371
|
+
selected_cols = self._get_active_columns()
|
372
|
+
if len(selected_cols) > 0:
|
373
|
+
dataset = dataset.select(selected_cols)
|
374
|
+
|
375
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
376
|
+
|
377
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
378
|
+
if SNOWML_SPROC_ENV in os.environ:
|
379
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
380
|
+
project=_PROJECT,
|
381
|
+
subproject=_SUBPROJECT,
|
382
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDRegressor.__class__.__name__),
|
383
|
+
api_calls=[Session.call],
|
384
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
385
|
+
)
|
386
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
387
|
+
pd_df.columns = dataset.columns
|
388
|
+
dataset = pd_df
|
389
|
+
|
390
|
+
model_trainer = ModelTrainerBuilder.build(
|
391
|
+
estimator=self._sklearn_object,
|
392
|
+
dataset=dataset,
|
393
|
+
input_cols=self.input_cols,
|
394
|
+
label_cols=self.label_cols,
|
395
|
+
sample_weight_col=self.sample_weight_col,
|
396
|
+
autogenerated=self._autogenerated,
|
397
|
+
subproject=_SUBPROJECT
|
398
|
+
)
|
399
|
+
self._sklearn_object = model_trainer.train()
|
367
400
|
self._is_fitted = True
|
368
401
|
self._get_model_signatures(dataset)
|
369
402
|
return self
|
370
403
|
|
371
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
372
|
-
session = dataset._session
|
373
|
-
assert session is not None # keep mypy happy
|
374
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
375
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
376
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
377
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
378
|
-
|
379
|
-
# Specify input columns so column pruning will be enforced
|
380
|
-
selected_cols = self._get_active_columns()
|
381
|
-
if len(selected_cols) > 0:
|
382
|
-
dataset = dataset.select(selected_cols)
|
383
|
-
|
384
|
-
estimator = self._sklearn_object
|
385
|
-
assert estimator is not None # Keep mypy happy
|
386
|
-
|
387
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
388
|
-
|
389
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
390
|
-
dataset,
|
391
|
-
session,
|
392
|
-
estimator,
|
393
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
394
|
-
self.input_cols,
|
395
|
-
self.label_cols,
|
396
|
-
self.sample_weight_col,
|
397
|
-
)
|
398
|
-
|
399
404
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
400
405
|
if self._drop_input_cols:
|
401
406
|
return []
|
@@ -583,11 +588,6 @@ class SGDRegressor(BaseTransformer):
|
|
583
588
|
subproject=_SUBPROJECT,
|
584
589
|
custom_tags=dict([("autogen", True)]),
|
585
590
|
)
|
586
|
-
@telemetry.add_stmt_params_to_df(
|
587
|
-
project=_PROJECT,
|
588
|
-
subproject=_SUBPROJECT,
|
589
|
-
custom_tags=dict([("autogen", True)]),
|
590
|
-
)
|
591
591
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
592
592
|
"""Predict using the linear model
|
593
593
|
For more details on this function, see [sklearn.linear_model.SGDRegressor.predict]
|
@@ -641,11 +641,6 @@ class SGDRegressor(BaseTransformer):
|
|
641
641
|
subproject=_SUBPROJECT,
|
642
642
|
custom_tags=dict([("autogen", True)]),
|
643
643
|
)
|
644
|
-
@telemetry.add_stmt_params_to_df(
|
645
|
-
project=_PROJECT,
|
646
|
-
subproject=_SUBPROJECT,
|
647
|
-
custom_tags=dict([("autogen", True)]),
|
648
|
-
)
|
649
644
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
650
645
|
"""Method not supported for this class.
|
651
646
|
|
@@ -702,7 +697,8 @@ class SGDRegressor(BaseTransformer):
|
|
702
697
|
if False:
|
703
698
|
self.fit(dataset)
|
704
699
|
assert self._sklearn_object is not None
|
705
|
-
|
700
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
701
|
+
return labels
|
706
702
|
else:
|
707
703
|
raise NotImplementedError
|
708
704
|
|
@@ -738,6 +734,7 @@ class SGDRegressor(BaseTransformer):
|
|
738
734
|
output_cols = []
|
739
735
|
|
740
736
|
# Make sure column names are valid snowflake identifiers.
|
737
|
+
assert output_cols is not None # Make MyPy happy
|
741
738
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
742
739
|
|
743
740
|
return rv
|
@@ -748,11 +745,6 @@ class SGDRegressor(BaseTransformer):
|
|
748
745
|
subproject=_SUBPROJECT,
|
749
746
|
custom_tags=dict([("autogen", True)]),
|
750
747
|
)
|
751
|
-
@telemetry.add_stmt_params_to_df(
|
752
|
-
project=_PROJECT,
|
753
|
-
subproject=_SUBPROJECT,
|
754
|
-
custom_tags=dict([("autogen", True)]),
|
755
|
-
)
|
756
748
|
def predict_proba(
|
757
749
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
758
750
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -793,11 +785,6 @@ class SGDRegressor(BaseTransformer):
|
|
793
785
|
subproject=_SUBPROJECT,
|
794
786
|
custom_tags=dict([("autogen", True)]),
|
795
787
|
)
|
796
|
-
@telemetry.add_stmt_params_to_df(
|
797
|
-
project=_PROJECT,
|
798
|
-
subproject=_SUBPROJECT,
|
799
|
-
custom_tags=dict([("autogen", True)]),
|
800
|
-
)
|
801
788
|
def predict_log_proba(
|
802
789
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
803
790
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -834,16 +821,6 @@ class SGDRegressor(BaseTransformer):
|
|
834
821
|
return output_df
|
835
822
|
|
836
823
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
837
|
-
@telemetry.send_api_usage_telemetry(
|
838
|
-
project=_PROJECT,
|
839
|
-
subproject=_SUBPROJECT,
|
840
|
-
custom_tags=dict([("autogen", True)]),
|
841
|
-
)
|
842
|
-
@telemetry.add_stmt_params_to_df(
|
843
|
-
project=_PROJECT,
|
844
|
-
subproject=_SUBPROJECT,
|
845
|
-
custom_tags=dict([("autogen", True)]),
|
846
|
-
)
|
847
824
|
def decision_function(
|
848
825
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
849
826
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -944,11 +921,6 @@ class SGDRegressor(BaseTransformer):
|
|
944
921
|
subproject=_SUBPROJECT,
|
945
922
|
custom_tags=dict([("autogen", True)]),
|
946
923
|
)
|
947
|
-
@telemetry.add_stmt_params_to_df(
|
948
|
-
project=_PROJECT,
|
949
|
-
subproject=_SUBPROJECT,
|
950
|
-
custom_tags=dict([("autogen", True)]),
|
951
|
-
)
|
952
924
|
def kneighbors(
|
953
925
|
self,
|
954
926
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1008,9 +980,9 @@ class SGDRegressor(BaseTransformer):
|
|
1008
980
|
# For classifier, the type of predict is the same as the type of label
|
1009
981
|
if self._sklearn_object._estimator_type == 'classifier':
|
1010
982
|
# label columns is the desired type for output
|
1011
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
983
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1012
984
|
# rename the output columns
|
1013
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
985
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1014
986
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1015
987
|
([] if self._drop_input_cols else inputs)
|
1016
988
|
+ outputs)
|