snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SpectralClustering(BaseTransformer):
|
57
58
|
r"""Apply clustering to a projection of the normalized Laplacian
|
58
59
|
For more details on this class, see [sklearn.cluster.SpectralClustering]
|
@@ -60,6 +61,49 @@ class SpectralClustering(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int, default=8
|
64
108
|
The dimension of the projection subspace.
|
65
109
|
|
@@ -159,42 +203,6 @@ class SpectralClustering(BaseTransformer):
|
|
159
203
|
|
160
204
|
verbose: bool, default=False
|
161
205
|
Verbosity mode.
|
162
|
-
|
163
|
-
input_cols: Optional[Union[str, List[str]]]
|
164
|
-
A string or list of strings representing column names that contain features.
|
165
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
166
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
167
|
-
parameters are considered input columns.
|
168
|
-
|
169
|
-
label_cols: Optional[Union[str, List[str]]]
|
170
|
-
A string or list of strings representing column names that contain labels.
|
171
|
-
This is a required param for estimators, as there is no way to infer these
|
172
|
-
columns. If this parameter is not specified, then object is fitted without
|
173
|
-
labels (like a transformer).
|
174
|
-
|
175
|
-
output_cols: Optional[Union[str, List[str]]]
|
176
|
-
A string or list of strings representing column names that will store the
|
177
|
-
output of predict and transform operations. The length of output_cols must
|
178
|
-
match the expected number of output columns from the specific estimator or
|
179
|
-
transformer class used.
|
180
|
-
If this parameter is not specified, output column names are derived by
|
181
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
182
|
-
column names work for estimator's predict() method, but output_cols must
|
183
|
-
be set explicitly for transformers.
|
184
|
-
|
185
|
-
sample_weight_col: Optional[str]
|
186
|
-
A string representing the column name containing the sample weights.
|
187
|
-
This argument is only required when working with weighted datasets.
|
188
|
-
|
189
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
190
|
-
A string or a list of strings indicating column names to be excluded from any
|
191
|
-
operations (such as train, transform, or inference). These specified column(s)
|
192
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
193
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
194
|
-
columns, like index columns, during training or inference.
|
195
|
-
|
196
|
-
drop_input_cols: Optional[bool], default=False
|
197
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
198
206
|
"""
|
199
207
|
|
200
208
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -230,7 +238,7 @@ class SpectralClustering(BaseTransformer):
|
|
230
238
|
self.set_passthrough_cols(passthrough_cols)
|
231
239
|
self.set_drop_input_cols(drop_input_cols)
|
232
240
|
self.set_sample_weight_col(sample_weight_col)
|
233
|
-
deps = set(
|
241
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
234
242
|
|
235
243
|
self._deps = list(deps)
|
236
244
|
|
@@ -253,13 +261,14 @@ class SpectralClustering(BaseTransformer):
|
|
253
261
|
args=init_args,
|
254
262
|
klass=sklearn.cluster.SpectralClustering
|
255
263
|
)
|
256
|
-
self._sklearn_object = sklearn.cluster.SpectralClustering(
|
264
|
+
self._sklearn_object: Any = sklearn.cluster.SpectralClustering(
|
257
265
|
**cleaned_up_init_args,
|
258
266
|
)
|
259
267
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
260
268
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
261
269
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
262
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
270
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
271
|
+
self._autogenerated = True
|
263
272
|
|
264
273
|
def _get_rand_id(self) -> str:
|
265
274
|
"""
|
@@ -315,54 +324,48 @@ class SpectralClustering(BaseTransformer):
|
|
315
324
|
self
|
316
325
|
"""
|
317
326
|
self._infer_input_output_cols(dataset)
|
318
|
-
if isinstance(dataset,
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
self.
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
327
|
+
if isinstance(dataset, DataFrame):
|
328
|
+
session = dataset._session
|
329
|
+
assert session is not None # keep mypy happy
|
330
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
331
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
332
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
333
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
334
|
+
|
335
|
+
# Specify input columns so column pruning will be enforced
|
336
|
+
selected_cols = self._get_active_columns()
|
337
|
+
if len(selected_cols) > 0:
|
338
|
+
dataset = dataset.select(selected_cols)
|
339
|
+
|
340
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
341
|
+
|
342
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
343
|
+
if SNOWML_SPROC_ENV in os.environ:
|
344
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
345
|
+
project=_PROJECT,
|
346
|
+
subproject=_SUBPROJECT,
|
347
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralClustering.__class__.__name__),
|
348
|
+
api_calls=[Session.call],
|
349
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
350
|
+
)
|
351
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
352
|
+
pd_df.columns = dataset.columns
|
353
|
+
dataset = pd_df
|
354
|
+
|
355
|
+
model_trainer = ModelTrainerBuilder.build(
|
356
|
+
estimator=self._sklearn_object,
|
357
|
+
dataset=dataset,
|
358
|
+
input_cols=self.input_cols,
|
359
|
+
label_cols=self.label_cols,
|
360
|
+
sample_weight_col=self.sample_weight_col,
|
361
|
+
autogenerated=self._autogenerated,
|
362
|
+
subproject=_SUBPROJECT
|
363
|
+
)
|
364
|
+
self._sklearn_object = model_trainer.train()
|
334
365
|
self._is_fitted = True
|
335
366
|
self._get_model_signatures(dataset)
|
336
367
|
return self
|
337
368
|
|
338
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
339
|
-
session = dataset._session
|
340
|
-
assert session is not None # keep mypy happy
|
341
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
342
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
343
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
344
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
345
|
-
|
346
|
-
# Specify input columns so column pruning will be enforced
|
347
|
-
selected_cols = self._get_active_columns()
|
348
|
-
if len(selected_cols) > 0:
|
349
|
-
dataset = dataset.select(selected_cols)
|
350
|
-
|
351
|
-
estimator = self._sklearn_object
|
352
|
-
assert estimator is not None # Keep mypy happy
|
353
|
-
|
354
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
355
|
-
|
356
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
357
|
-
dataset,
|
358
|
-
session,
|
359
|
-
estimator,
|
360
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
361
|
-
self.input_cols,
|
362
|
-
self.label_cols,
|
363
|
-
self.sample_weight_col,
|
364
|
-
)
|
365
|
-
|
366
369
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
367
370
|
if self._drop_input_cols:
|
368
371
|
return []
|
@@ -550,11 +553,6 @@ class SpectralClustering(BaseTransformer):
|
|
550
553
|
subproject=_SUBPROJECT,
|
551
554
|
custom_tags=dict([("autogen", True)]),
|
552
555
|
)
|
553
|
-
@telemetry.add_stmt_params_to_df(
|
554
|
-
project=_PROJECT,
|
555
|
-
subproject=_SUBPROJECT,
|
556
|
-
custom_tags=dict([("autogen", True)]),
|
557
|
-
)
|
558
556
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
559
557
|
"""Method not supported for this class.
|
560
558
|
|
@@ -606,11 +604,6 @@ class SpectralClustering(BaseTransformer):
|
|
606
604
|
subproject=_SUBPROJECT,
|
607
605
|
custom_tags=dict([("autogen", True)]),
|
608
606
|
)
|
609
|
-
@telemetry.add_stmt_params_to_df(
|
610
|
-
project=_PROJECT,
|
611
|
-
subproject=_SUBPROJECT,
|
612
|
-
custom_tags=dict([("autogen", True)]),
|
613
|
-
)
|
614
607
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
615
608
|
"""Method not supported for this class.
|
616
609
|
|
@@ -669,7 +662,8 @@ class SpectralClustering(BaseTransformer):
|
|
669
662
|
if True:
|
670
663
|
self.fit(dataset)
|
671
664
|
assert self._sklearn_object is not None
|
672
|
-
|
665
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
666
|
+
return labels
|
673
667
|
else:
|
674
668
|
raise NotImplementedError
|
675
669
|
|
@@ -705,6 +699,7 @@ class SpectralClustering(BaseTransformer):
|
|
705
699
|
output_cols = []
|
706
700
|
|
707
701
|
# Make sure column names are valid snowflake identifiers.
|
702
|
+
assert output_cols is not None # Make MyPy happy
|
708
703
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
709
704
|
|
710
705
|
return rv
|
@@ -715,11 +710,6 @@ class SpectralClustering(BaseTransformer):
|
|
715
710
|
subproject=_SUBPROJECT,
|
716
711
|
custom_tags=dict([("autogen", True)]),
|
717
712
|
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
713
|
def predict_proba(
|
724
714
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
725
715
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -760,11 +750,6 @@ class SpectralClustering(BaseTransformer):
|
|
760
750
|
subproject=_SUBPROJECT,
|
761
751
|
custom_tags=dict([("autogen", True)]),
|
762
752
|
)
|
763
|
-
@telemetry.add_stmt_params_to_df(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
753
|
def predict_log_proba(
|
769
754
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
770
755
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -801,16 +786,6 @@ class SpectralClustering(BaseTransformer):
|
|
801
786
|
return output_df
|
802
787
|
|
803
788
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
804
|
-
@telemetry.send_api_usage_telemetry(
|
805
|
-
project=_PROJECT,
|
806
|
-
subproject=_SUBPROJECT,
|
807
|
-
custom_tags=dict([("autogen", True)]),
|
808
|
-
)
|
809
|
-
@telemetry.add_stmt_params_to_df(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
789
|
def decision_function(
|
815
790
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
816
791
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -909,11 +884,6 @@ class SpectralClustering(BaseTransformer):
|
|
909
884
|
subproject=_SUBPROJECT,
|
910
885
|
custom_tags=dict([("autogen", True)]),
|
911
886
|
)
|
912
|
-
@telemetry.add_stmt_params_to_df(
|
913
|
-
project=_PROJECT,
|
914
|
-
subproject=_SUBPROJECT,
|
915
|
-
custom_tags=dict([("autogen", True)]),
|
916
|
-
)
|
917
887
|
def kneighbors(
|
918
888
|
self,
|
919
889
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -973,9 +943,9 @@ class SpectralClustering(BaseTransformer):
|
|
973
943
|
# For classifier, the type of predict is the same as the type of label
|
974
944
|
if self._sklearn_object._estimator_type == 'classifier':
|
975
945
|
# label columns is the desired type for output
|
976
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
946
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
977
947
|
# rename the output columns
|
978
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
948
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
979
949
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
980
950
|
([] if self._drop_input_cols else inputs)
|
981
951
|
+ outputs)
|