snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreesRegressor(BaseTransformer):
|
57
58
|
r"""An extra-trees regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.ExtraTreesRegressor]
|
@@ -60,6 +61,51 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -192,42 +238,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
192
238
|
- If int, then draw `max_samples` samples.
|
193
239
|
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
|
194
240
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
195
|
-
|
196
|
-
input_cols: Optional[Union[str, List[str]]]
|
197
|
-
A string or list of strings representing column names that contain features.
|
198
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
199
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
200
|
-
parameters are considered input columns.
|
201
|
-
|
202
|
-
label_cols: Optional[Union[str, List[str]]]
|
203
|
-
A string or list of strings representing column names that contain labels.
|
204
|
-
This is a required param for estimators, as there is no way to infer these
|
205
|
-
columns. If this parameter is not specified, then object is fitted without
|
206
|
-
labels (like a transformer).
|
207
|
-
|
208
|
-
output_cols: Optional[Union[str, List[str]]]
|
209
|
-
A string or list of strings representing column names that will store the
|
210
|
-
output of predict and transform operations. The length of output_cols must
|
211
|
-
match the expected number of output columns from the specific estimator or
|
212
|
-
transformer class used.
|
213
|
-
If this parameter is not specified, output column names are derived by
|
214
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
215
|
-
column names work for estimator's predict() method, but output_cols must
|
216
|
-
be set explicitly for transformers.
|
217
|
-
|
218
|
-
sample_weight_col: Optional[str]
|
219
|
-
A string representing the column name containing the sample weights.
|
220
|
-
This argument is only required when working with weighted datasets.
|
221
|
-
|
222
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
223
|
-
A string or a list of strings indicating column names to be excluded from any
|
224
|
-
operations (such as train, transform, or inference). These specified column(s)
|
225
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
226
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
227
|
-
columns, like index columns, during training or inference.
|
228
|
-
|
229
|
-
drop_input_cols: Optional[bool], default=False
|
230
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
231
241
|
"""
|
232
242
|
|
233
243
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -265,7 +275,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
265
275
|
self.set_passthrough_cols(passthrough_cols)
|
266
276
|
self.set_drop_input_cols(drop_input_cols)
|
267
277
|
self.set_sample_weight_col(sample_weight_col)
|
268
|
-
deps = set(
|
278
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
269
279
|
|
270
280
|
self._deps = list(deps)
|
271
281
|
|
@@ -290,13 +300,14 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
290
300
|
args=init_args,
|
291
301
|
klass=sklearn.ensemble.ExtraTreesRegressor
|
292
302
|
)
|
293
|
-
self._sklearn_object = sklearn.ensemble.ExtraTreesRegressor(
|
303
|
+
self._sklearn_object: Any = sklearn.ensemble.ExtraTreesRegressor(
|
294
304
|
**cleaned_up_init_args,
|
295
305
|
)
|
296
306
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
297
307
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
298
308
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
299
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
309
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
310
|
+
self._autogenerated = True
|
300
311
|
|
301
312
|
def _get_rand_id(self) -> str:
|
302
313
|
"""
|
@@ -352,54 +363,48 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
352
363
|
self
|
353
364
|
"""
|
354
365
|
self._infer_input_output_cols(dataset)
|
355
|
-
if isinstance(dataset,
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
self.
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
366
|
+
if isinstance(dataset, DataFrame):
|
367
|
+
session = dataset._session
|
368
|
+
assert session is not None # keep mypy happy
|
369
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
370
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
371
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
372
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
373
|
+
|
374
|
+
# Specify input columns so column pruning will be enforced
|
375
|
+
selected_cols = self._get_active_columns()
|
376
|
+
if len(selected_cols) > 0:
|
377
|
+
dataset = dataset.select(selected_cols)
|
378
|
+
|
379
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
380
|
+
|
381
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
382
|
+
if SNOWML_SPROC_ENV in os.environ:
|
383
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
384
|
+
project=_PROJECT,
|
385
|
+
subproject=_SUBPROJECT,
|
386
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesRegressor.__class__.__name__),
|
387
|
+
api_calls=[Session.call],
|
388
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
389
|
+
)
|
390
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
391
|
+
pd_df.columns = dataset.columns
|
392
|
+
dataset = pd_df
|
393
|
+
|
394
|
+
model_trainer = ModelTrainerBuilder.build(
|
395
|
+
estimator=self._sklearn_object,
|
396
|
+
dataset=dataset,
|
397
|
+
input_cols=self.input_cols,
|
398
|
+
label_cols=self.label_cols,
|
399
|
+
sample_weight_col=self.sample_weight_col,
|
400
|
+
autogenerated=self._autogenerated,
|
401
|
+
subproject=_SUBPROJECT
|
402
|
+
)
|
403
|
+
self._sklearn_object = model_trainer.train()
|
371
404
|
self._is_fitted = True
|
372
405
|
self._get_model_signatures(dataset)
|
373
406
|
return self
|
374
407
|
|
375
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
376
|
-
session = dataset._session
|
377
|
-
assert session is not None # keep mypy happy
|
378
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
379
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
380
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
381
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
382
|
-
|
383
|
-
# Specify input columns so column pruning will be enforced
|
384
|
-
selected_cols = self._get_active_columns()
|
385
|
-
if len(selected_cols) > 0:
|
386
|
-
dataset = dataset.select(selected_cols)
|
387
|
-
|
388
|
-
estimator = self._sklearn_object
|
389
|
-
assert estimator is not None # Keep mypy happy
|
390
|
-
|
391
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
392
|
-
|
393
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
394
|
-
dataset,
|
395
|
-
session,
|
396
|
-
estimator,
|
397
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
398
|
-
self.input_cols,
|
399
|
-
self.label_cols,
|
400
|
-
self.sample_weight_col,
|
401
|
-
)
|
402
|
-
|
403
408
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
404
409
|
if self._drop_input_cols:
|
405
410
|
return []
|
@@ -587,11 +592,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
587
592
|
subproject=_SUBPROJECT,
|
588
593
|
custom_tags=dict([("autogen", True)]),
|
589
594
|
)
|
590
|
-
@telemetry.add_stmt_params_to_df(
|
591
|
-
project=_PROJECT,
|
592
|
-
subproject=_SUBPROJECT,
|
593
|
-
custom_tags=dict([("autogen", True)]),
|
594
|
-
)
|
595
595
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
596
596
|
"""Predict regression target for X
|
597
597
|
For more details on this function, see [sklearn.ensemble.ExtraTreesRegressor.predict]
|
@@ -645,11 +645,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
645
645
|
subproject=_SUBPROJECT,
|
646
646
|
custom_tags=dict([("autogen", True)]),
|
647
647
|
)
|
648
|
-
@telemetry.add_stmt_params_to_df(
|
649
|
-
project=_PROJECT,
|
650
|
-
subproject=_SUBPROJECT,
|
651
|
-
custom_tags=dict([("autogen", True)]),
|
652
|
-
)
|
653
648
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
654
649
|
"""Method not supported for this class.
|
655
650
|
|
@@ -706,7 +701,8 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
706
701
|
if False:
|
707
702
|
self.fit(dataset)
|
708
703
|
assert self._sklearn_object is not None
|
709
|
-
|
704
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
705
|
+
return labels
|
710
706
|
else:
|
711
707
|
raise NotImplementedError
|
712
708
|
|
@@ -742,6 +738,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
742
738
|
output_cols = []
|
743
739
|
|
744
740
|
# Make sure column names are valid snowflake identifiers.
|
741
|
+
assert output_cols is not None # Make MyPy happy
|
745
742
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
746
743
|
|
747
744
|
return rv
|
@@ -752,11 +749,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
752
749
|
subproject=_SUBPROJECT,
|
753
750
|
custom_tags=dict([("autogen", True)]),
|
754
751
|
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
752
|
def predict_proba(
|
761
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
762
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -797,11 +789,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
797
789
|
subproject=_SUBPROJECT,
|
798
790
|
custom_tags=dict([("autogen", True)]),
|
799
791
|
)
|
800
|
-
@telemetry.add_stmt_params_to_df(
|
801
|
-
project=_PROJECT,
|
802
|
-
subproject=_SUBPROJECT,
|
803
|
-
custom_tags=dict([("autogen", True)]),
|
804
|
-
)
|
805
792
|
def predict_log_proba(
|
806
793
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
807
794
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -838,16 +825,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
838
825
|
return output_df
|
839
826
|
|
840
827
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
841
|
-
@telemetry.send_api_usage_telemetry(
|
842
|
-
project=_PROJECT,
|
843
|
-
subproject=_SUBPROJECT,
|
844
|
-
custom_tags=dict([("autogen", True)]),
|
845
|
-
)
|
846
|
-
@telemetry.add_stmt_params_to_df(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
828
|
def decision_function(
|
852
829
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
853
830
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -948,11 +925,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
948
925
|
subproject=_SUBPROJECT,
|
949
926
|
custom_tags=dict([("autogen", True)]),
|
950
927
|
)
|
951
|
-
@telemetry.add_stmt_params_to_df(
|
952
|
-
project=_PROJECT,
|
953
|
-
subproject=_SUBPROJECT,
|
954
|
-
custom_tags=dict([("autogen", True)]),
|
955
|
-
)
|
956
928
|
def kneighbors(
|
957
929
|
self,
|
958
930
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1012,9 +984,9 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
1012
984
|
# For classifier, the type of predict is the same as the type of label
|
1013
985
|
if self._sklearn_object._estimator_type == 'classifier':
|
1014
986
|
# label columns is the desired type for output
|
1015
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
987
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1016
988
|
# rename the output columns
|
1017
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
989
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1018
990
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1019
991
|
([] if self._drop_input_cols else inputs)
|
1020
992
|
+ outputs)
|