snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SGDClassifier(BaseTransformer):
|
57
58
|
r"""Linear classifiers (SVM, logistic regression, etc
|
58
59
|
For more details on this class, see [sklearn.linear_model.SGDClassifier]
|
@@ -60,6 +61,51 @@ class SGDClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'hinge', 'log_loss', 'modified_huber', 'squared_hinge', 'perceptron', 'squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'}, default='hinge'
|
64
110
|
The loss function to be used.
|
65
111
|
|
@@ -214,42 +260,6 @@ class SGDClassifier(BaseTransformer):
|
|
214
260
|
samples seen reaches `average`. So ``average=10`` will begin
|
215
261
|
averaging after seeing 10 samples.
|
216
262
|
Integer values must be in the range `[1, n_samples]`.
|
217
|
-
|
218
|
-
input_cols: Optional[Union[str, List[str]]]
|
219
|
-
A string or list of strings representing column names that contain features.
|
220
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
221
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
222
|
-
parameters are considered input columns.
|
223
|
-
|
224
|
-
label_cols: Optional[Union[str, List[str]]]
|
225
|
-
A string or list of strings representing column names that contain labels.
|
226
|
-
This is a required param for estimators, as there is no way to infer these
|
227
|
-
columns. If this parameter is not specified, then object is fitted without
|
228
|
-
labels (like a transformer).
|
229
|
-
|
230
|
-
output_cols: Optional[Union[str, List[str]]]
|
231
|
-
A string or list of strings representing column names that will store the
|
232
|
-
output of predict and transform operations. The length of output_cols must
|
233
|
-
match the expected number of output columns from the specific estimator or
|
234
|
-
transformer class used.
|
235
|
-
If this parameter is not specified, output column names are derived by
|
236
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
237
|
-
column names work for estimator's predict() method, but output_cols must
|
238
|
-
be set explicitly for transformers.
|
239
|
-
|
240
|
-
sample_weight_col: Optional[str]
|
241
|
-
A string representing the column name containing the sample weights.
|
242
|
-
This argument is only required when working with weighted datasets.
|
243
|
-
|
244
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
245
|
-
A string or a list of strings indicating column names to be excluded from any
|
246
|
-
operations (such as train, transform, or inference). These specified column(s)
|
247
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
248
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
249
|
-
columns, like index columns, during training or inference.
|
250
|
-
|
251
|
-
drop_input_cols: Optional[bool], default=False
|
252
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
253
263
|
"""
|
254
264
|
|
255
265
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -291,7 +301,7 @@ class SGDClassifier(BaseTransformer):
|
|
291
301
|
self.set_passthrough_cols(passthrough_cols)
|
292
302
|
self.set_drop_input_cols(drop_input_cols)
|
293
303
|
self.set_sample_weight_col(sample_weight_col)
|
294
|
-
deps = set(
|
304
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
295
305
|
|
296
306
|
self._deps = list(deps)
|
297
307
|
|
@@ -320,13 +330,14 @@ class SGDClassifier(BaseTransformer):
|
|
320
330
|
args=init_args,
|
321
331
|
klass=sklearn.linear_model.SGDClassifier
|
322
332
|
)
|
323
|
-
self._sklearn_object = sklearn.linear_model.SGDClassifier(
|
333
|
+
self._sklearn_object: Any = sklearn.linear_model.SGDClassifier(
|
324
334
|
**cleaned_up_init_args,
|
325
335
|
)
|
326
336
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
327
337
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
328
338
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
329
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
339
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
340
|
+
self._autogenerated = True
|
330
341
|
|
331
342
|
def _get_rand_id(self) -> str:
|
332
343
|
"""
|
@@ -382,54 +393,48 @@ class SGDClassifier(BaseTransformer):
|
|
382
393
|
self
|
383
394
|
"""
|
384
395
|
self._infer_input_output_cols(dataset)
|
385
|
-
if isinstance(dataset,
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
self.
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
396
|
+
if isinstance(dataset, DataFrame):
|
397
|
+
session = dataset._session
|
398
|
+
assert session is not None # keep mypy happy
|
399
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
400
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
401
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
402
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
403
|
+
|
404
|
+
# Specify input columns so column pruning will be enforced
|
405
|
+
selected_cols = self._get_active_columns()
|
406
|
+
if len(selected_cols) > 0:
|
407
|
+
dataset = dataset.select(selected_cols)
|
408
|
+
|
409
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
410
|
+
|
411
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
412
|
+
if SNOWML_SPROC_ENV in os.environ:
|
413
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
414
|
+
project=_PROJECT,
|
415
|
+
subproject=_SUBPROJECT,
|
416
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDClassifier.__class__.__name__),
|
417
|
+
api_calls=[Session.call],
|
418
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
419
|
+
)
|
420
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
421
|
+
pd_df.columns = dataset.columns
|
422
|
+
dataset = pd_df
|
423
|
+
|
424
|
+
model_trainer = ModelTrainerBuilder.build(
|
425
|
+
estimator=self._sklearn_object,
|
426
|
+
dataset=dataset,
|
427
|
+
input_cols=self.input_cols,
|
428
|
+
label_cols=self.label_cols,
|
429
|
+
sample_weight_col=self.sample_weight_col,
|
430
|
+
autogenerated=self._autogenerated,
|
431
|
+
subproject=_SUBPROJECT
|
432
|
+
)
|
433
|
+
self._sklearn_object = model_trainer.train()
|
401
434
|
self._is_fitted = True
|
402
435
|
self._get_model_signatures(dataset)
|
403
436
|
return self
|
404
437
|
|
405
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
406
|
-
session = dataset._session
|
407
|
-
assert session is not None # keep mypy happy
|
408
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
409
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
410
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
411
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
412
|
-
|
413
|
-
# Specify input columns so column pruning will be enforced
|
414
|
-
selected_cols = self._get_active_columns()
|
415
|
-
if len(selected_cols) > 0:
|
416
|
-
dataset = dataset.select(selected_cols)
|
417
|
-
|
418
|
-
estimator = self._sklearn_object
|
419
|
-
assert estimator is not None # Keep mypy happy
|
420
|
-
|
421
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
422
|
-
|
423
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
424
|
-
dataset,
|
425
|
-
session,
|
426
|
-
estimator,
|
427
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
428
|
-
self.input_cols,
|
429
|
-
self.label_cols,
|
430
|
-
self.sample_weight_col,
|
431
|
-
)
|
432
|
-
|
433
438
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
434
439
|
if self._drop_input_cols:
|
435
440
|
return []
|
@@ -617,11 +622,6 @@ class SGDClassifier(BaseTransformer):
|
|
617
622
|
subproject=_SUBPROJECT,
|
618
623
|
custom_tags=dict([("autogen", True)]),
|
619
624
|
)
|
620
|
-
@telemetry.add_stmt_params_to_df(
|
621
|
-
project=_PROJECT,
|
622
|
-
subproject=_SUBPROJECT,
|
623
|
-
custom_tags=dict([("autogen", True)]),
|
624
|
-
)
|
625
625
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
626
626
|
"""Predict class labels for samples in X
|
627
627
|
For more details on this function, see [sklearn.linear_model.SGDClassifier.predict]
|
@@ -675,11 +675,6 @@ class SGDClassifier(BaseTransformer):
|
|
675
675
|
subproject=_SUBPROJECT,
|
676
676
|
custom_tags=dict([("autogen", True)]),
|
677
677
|
)
|
678
|
-
@telemetry.add_stmt_params_to_df(
|
679
|
-
project=_PROJECT,
|
680
|
-
subproject=_SUBPROJECT,
|
681
|
-
custom_tags=dict([("autogen", True)]),
|
682
|
-
)
|
683
678
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
684
679
|
"""Method not supported for this class.
|
685
680
|
|
@@ -736,7 +731,8 @@ class SGDClassifier(BaseTransformer):
|
|
736
731
|
if False:
|
737
732
|
self.fit(dataset)
|
738
733
|
assert self._sklearn_object is not None
|
739
|
-
|
734
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
735
|
+
return labels
|
740
736
|
else:
|
741
737
|
raise NotImplementedError
|
742
738
|
|
@@ -772,6 +768,7 @@ class SGDClassifier(BaseTransformer):
|
|
772
768
|
output_cols = []
|
773
769
|
|
774
770
|
# Make sure column names are valid snowflake identifiers.
|
771
|
+
assert output_cols is not None # Make MyPy happy
|
775
772
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
776
773
|
|
777
774
|
return rv
|
@@ -782,11 +779,6 @@ class SGDClassifier(BaseTransformer):
|
|
782
779
|
subproject=_SUBPROJECT,
|
783
780
|
custom_tags=dict([("autogen", True)]),
|
784
781
|
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
782
|
def predict_proba(
|
791
783
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
792
784
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -829,11 +821,6 @@ class SGDClassifier(BaseTransformer):
|
|
829
821
|
subproject=_SUBPROJECT,
|
830
822
|
custom_tags=dict([("autogen", True)]),
|
831
823
|
)
|
832
|
-
@telemetry.add_stmt_params_to_df(
|
833
|
-
project=_PROJECT,
|
834
|
-
subproject=_SUBPROJECT,
|
835
|
-
custom_tags=dict([("autogen", True)]),
|
836
|
-
)
|
837
824
|
def predict_log_proba(
|
838
825
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
839
826
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -872,16 +859,6 @@ class SGDClassifier(BaseTransformer):
|
|
872
859
|
return output_df
|
873
860
|
|
874
861
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
875
|
-
@telemetry.send_api_usage_telemetry(
|
876
|
-
project=_PROJECT,
|
877
|
-
subproject=_SUBPROJECT,
|
878
|
-
custom_tags=dict([("autogen", True)]),
|
879
|
-
)
|
880
|
-
@telemetry.add_stmt_params_to_df(
|
881
|
-
project=_PROJECT,
|
882
|
-
subproject=_SUBPROJECT,
|
883
|
-
custom_tags=dict([("autogen", True)]),
|
884
|
-
)
|
885
862
|
def decision_function(
|
886
863
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
887
864
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -984,11 +961,6 @@ class SGDClassifier(BaseTransformer):
|
|
984
961
|
subproject=_SUBPROJECT,
|
985
962
|
custom_tags=dict([("autogen", True)]),
|
986
963
|
)
|
987
|
-
@telemetry.add_stmt_params_to_df(
|
988
|
-
project=_PROJECT,
|
989
|
-
subproject=_SUBPROJECT,
|
990
|
-
custom_tags=dict([("autogen", True)]),
|
991
|
-
)
|
992
964
|
def kneighbors(
|
993
965
|
self,
|
994
966
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1048,9 +1020,9 @@ class SGDClassifier(BaseTransformer):
|
|
1048
1020
|
# For classifier, the type of predict is the same as the type of label
|
1049
1021
|
if self._sklearn_object._estimator_type == 'classifier':
|
1050
1022
|
# label columns is the desired type for output
|
1051
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1023
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1052
1024
|
# rename the output columns
|
1053
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1025
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1054
1026
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1055
1027
|
([] if self._drop_input_cols else inputs)
|
1056
1028
|
+ outputs)
|