snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RidgeClassifierCV(BaseTransformer):
|
57
58
|
r"""Ridge classifier with built-in cross-validation
|
58
59
|
For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
|
@@ -60,6 +61,51 @@ class RidgeClassifierCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
|
64
110
|
Array of alpha values to try.
|
65
111
|
Regularization strength; must be a positive float. Regularization
|
@@ -104,42 +150,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
104
150
|
each alpha should be stored in the ``cv_values_`` attribute (see
|
105
151
|
below). This flag is only compatible with ``cv=None`` (i.e. using
|
106
152
|
Leave-One-Out Cross-Validation).
|
107
|
-
|
108
|
-
input_cols: Optional[Union[str, List[str]]]
|
109
|
-
A string or list of strings representing column names that contain features.
|
110
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
111
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
112
|
-
parameters are considered input columns.
|
113
|
-
|
114
|
-
label_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain labels.
|
116
|
-
This is a required param for estimators, as there is no way to infer these
|
117
|
-
columns. If this parameter is not specified, then object is fitted without
|
118
|
-
labels (like a transformer).
|
119
|
-
|
120
|
-
output_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that will store the
|
122
|
-
output of predict and transform operations. The length of output_cols must
|
123
|
-
match the expected number of output columns from the specific estimator or
|
124
|
-
transformer class used.
|
125
|
-
If this parameter is not specified, output column names are derived by
|
126
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
127
|
-
column names work for estimator's predict() method, but output_cols must
|
128
|
-
be set explicitly for transformers.
|
129
|
-
|
130
|
-
sample_weight_col: Optional[str]
|
131
|
-
A string representing the column name containing the sample weights.
|
132
|
-
This argument is only required when working with weighted datasets.
|
133
|
-
|
134
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or a list of strings indicating column names to be excluded from any
|
136
|
-
operations (such as train, transform, or inference). These specified column(s)
|
137
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
138
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
139
|
-
columns, like index columns, during training or inference.
|
140
|
-
|
141
|
-
drop_input_cols: Optional[bool], default=False
|
142
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
143
153
|
"""
|
144
154
|
|
145
155
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -166,7 +176,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
166
176
|
self.set_passthrough_cols(passthrough_cols)
|
167
177
|
self.set_drop_input_cols(drop_input_cols)
|
168
178
|
self.set_sample_weight_col(sample_weight_col)
|
169
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
170
180
|
|
171
181
|
self._deps = list(deps)
|
172
182
|
|
@@ -180,13 +190,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
180
190
|
args=init_args,
|
181
191
|
klass=sklearn.linear_model.RidgeClassifierCV
|
182
192
|
)
|
183
|
-
self._sklearn_object = sklearn.linear_model.RidgeClassifierCV(
|
193
|
+
self._sklearn_object: Any = sklearn.linear_model.RidgeClassifierCV(
|
184
194
|
**cleaned_up_init_args,
|
185
195
|
)
|
186
196
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
187
197
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
188
198
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
189
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
199
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
200
|
+
self._autogenerated = True
|
190
201
|
|
191
202
|
def _get_rand_id(self) -> str:
|
192
203
|
"""
|
@@ -242,54 +253,48 @@ class RidgeClassifierCV(BaseTransformer):
|
|
242
253
|
self
|
243
254
|
"""
|
244
255
|
self._infer_input_output_cols(dataset)
|
245
|
-
if isinstance(dataset,
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
self.
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
256
|
+
if isinstance(dataset, DataFrame):
|
257
|
+
session = dataset._session
|
258
|
+
assert session is not None # keep mypy happy
|
259
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
260
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
261
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
262
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
263
|
+
|
264
|
+
# Specify input columns so column pruning will be enforced
|
265
|
+
selected_cols = self._get_active_columns()
|
266
|
+
if len(selected_cols) > 0:
|
267
|
+
dataset = dataset.select(selected_cols)
|
268
|
+
|
269
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
270
|
+
|
271
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
272
|
+
if SNOWML_SPROC_ENV in os.environ:
|
273
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
274
|
+
project=_PROJECT,
|
275
|
+
subproject=_SUBPROJECT,
|
276
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
|
277
|
+
api_calls=[Session.call],
|
278
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
279
|
+
)
|
280
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
281
|
+
pd_df.columns = dataset.columns
|
282
|
+
dataset = pd_df
|
283
|
+
|
284
|
+
model_trainer = ModelTrainerBuilder.build(
|
285
|
+
estimator=self._sklearn_object,
|
286
|
+
dataset=dataset,
|
287
|
+
input_cols=self.input_cols,
|
288
|
+
label_cols=self.label_cols,
|
289
|
+
sample_weight_col=self.sample_weight_col,
|
290
|
+
autogenerated=self._autogenerated,
|
291
|
+
subproject=_SUBPROJECT
|
292
|
+
)
|
293
|
+
self._sklearn_object = model_trainer.train()
|
261
294
|
self._is_fitted = True
|
262
295
|
self._get_model_signatures(dataset)
|
263
296
|
return self
|
264
297
|
|
265
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
266
|
-
session = dataset._session
|
267
|
-
assert session is not None # keep mypy happy
|
268
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
269
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
270
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
271
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
272
|
-
|
273
|
-
# Specify input columns so column pruning will be enforced
|
274
|
-
selected_cols = self._get_active_columns()
|
275
|
-
if len(selected_cols) > 0:
|
276
|
-
dataset = dataset.select(selected_cols)
|
277
|
-
|
278
|
-
estimator = self._sklearn_object
|
279
|
-
assert estimator is not None # Keep mypy happy
|
280
|
-
|
281
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
282
|
-
|
283
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
284
|
-
dataset,
|
285
|
-
session,
|
286
|
-
estimator,
|
287
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
288
|
-
self.input_cols,
|
289
|
-
self.label_cols,
|
290
|
-
self.sample_weight_col,
|
291
|
-
)
|
292
|
-
|
293
298
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
294
299
|
if self._drop_input_cols:
|
295
300
|
return []
|
@@ -477,11 +482,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
477
482
|
subproject=_SUBPROJECT,
|
478
483
|
custom_tags=dict([("autogen", True)]),
|
479
484
|
)
|
480
|
-
@telemetry.add_stmt_params_to_df(
|
481
|
-
project=_PROJECT,
|
482
|
-
subproject=_SUBPROJECT,
|
483
|
-
custom_tags=dict([("autogen", True)]),
|
484
|
-
)
|
485
485
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
486
486
|
"""Predict class labels for samples in `X`
|
487
487
|
For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.predict]
|
@@ -535,11 +535,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
535
535
|
subproject=_SUBPROJECT,
|
536
536
|
custom_tags=dict([("autogen", True)]),
|
537
537
|
)
|
538
|
-
@telemetry.add_stmt_params_to_df(
|
539
|
-
project=_PROJECT,
|
540
|
-
subproject=_SUBPROJECT,
|
541
|
-
custom_tags=dict([("autogen", True)]),
|
542
|
-
)
|
543
538
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
544
539
|
"""Method not supported for this class.
|
545
540
|
|
@@ -596,7 +591,8 @@ class RidgeClassifierCV(BaseTransformer):
|
|
596
591
|
if False:
|
597
592
|
self.fit(dataset)
|
598
593
|
assert self._sklearn_object is not None
|
599
|
-
|
594
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
595
|
+
return labels
|
600
596
|
else:
|
601
597
|
raise NotImplementedError
|
602
598
|
|
@@ -632,6 +628,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
632
628
|
output_cols = []
|
633
629
|
|
634
630
|
# Make sure column names are valid snowflake identifiers.
|
631
|
+
assert output_cols is not None # Make MyPy happy
|
635
632
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
636
633
|
|
637
634
|
return rv
|
@@ -642,11 +639,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
642
639
|
subproject=_SUBPROJECT,
|
643
640
|
custom_tags=dict([("autogen", True)]),
|
644
641
|
)
|
645
|
-
@telemetry.add_stmt_params_to_df(
|
646
|
-
project=_PROJECT,
|
647
|
-
subproject=_SUBPROJECT,
|
648
|
-
custom_tags=dict([("autogen", True)]),
|
649
|
-
)
|
650
642
|
def predict_proba(
|
651
643
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
652
644
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -687,11 +679,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
687
679
|
subproject=_SUBPROJECT,
|
688
680
|
custom_tags=dict([("autogen", True)]),
|
689
681
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
682
|
def predict_log_proba(
|
696
683
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
697
684
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -728,16 +715,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
728
715
|
return output_df
|
729
716
|
|
730
717
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
731
|
-
@telemetry.send_api_usage_telemetry(
|
732
|
-
project=_PROJECT,
|
733
|
-
subproject=_SUBPROJECT,
|
734
|
-
custom_tags=dict([("autogen", True)]),
|
735
|
-
)
|
736
|
-
@telemetry.add_stmt_params_to_df(
|
737
|
-
project=_PROJECT,
|
738
|
-
subproject=_SUBPROJECT,
|
739
|
-
custom_tags=dict([("autogen", True)]),
|
740
|
-
)
|
741
718
|
def decision_function(
|
742
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
743
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -840,11 +817,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
840
817
|
subproject=_SUBPROJECT,
|
841
818
|
custom_tags=dict([("autogen", True)]),
|
842
819
|
)
|
843
|
-
@telemetry.add_stmt_params_to_df(
|
844
|
-
project=_PROJECT,
|
845
|
-
subproject=_SUBPROJECT,
|
846
|
-
custom_tags=dict([("autogen", True)]),
|
847
|
-
)
|
848
820
|
def kneighbors(
|
849
821
|
self,
|
850
822
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -904,9 +876,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
904
876
|
# For classifier, the type of predict is the same as the type of label
|
905
877
|
if self._sklearn_object._estimator_type == 'classifier':
|
906
878
|
# label columns is the desired type for output
|
907
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
879
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
908
880
|
# rename the output columns
|
909
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
881
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
910
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
911
883
|
([] if self._drop_input_cols else inputs)
|
912
884
|
+ outputs)
|