snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RidgeClassifierCV(BaseTransformer):
57
58
  r"""Ridge classifier with built-in cross-validation
58
59
  For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
@@ -60,6 +61,51 @@ class RidgeClassifierCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
64
110
  Array of alpha values to try.
65
111
  Regularization strength; must be a positive float. Regularization
@@ -104,42 +150,6 @@ class RidgeClassifierCV(BaseTransformer):
104
150
  each alpha should be stored in the ``cv_values_`` attribute (see
105
151
  below). This flag is only compatible with ``cv=None`` (i.e. using
106
152
  Leave-One-Out Cross-Validation).
107
-
108
- input_cols: Optional[Union[str, List[str]]]
109
- A string or list of strings representing column names that contain features.
110
- If this parameter is not specified, all columns in the input DataFrame except
111
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
112
- parameters are considered input columns.
113
-
114
- label_cols: Optional[Union[str, List[str]]]
115
- A string or list of strings representing column names that contain labels.
116
- This is a required param for estimators, as there is no way to infer these
117
- columns. If this parameter is not specified, then object is fitted without
118
- labels (like a transformer).
119
-
120
- output_cols: Optional[Union[str, List[str]]]
121
- A string or list of strings representing column names that will store the
122
- output of predict and transform operations. The length of output_cols must
123
- match the expected number of output columns from the specific estimator or
124
- transformer class used.
125
- If this parameter is not specified, output column names are derived by
126
- adding an OUTPUT_ prefix to the label column names. These inferred output
127
- column names work for estimator's predict() method, but output_cols must
128
- be set explicitly for transformers.
129
-
130
- sample_weight_col: Optional[str]
131
- A string representing the column name containing the sample weights.
132
- This argument is only required when working with weighted datasets.
133
-
134
- passthrough_cols: Optional[Union[str, List[str]]]
135
- A string or a list of strings indicating column names to be excluded from any
136
- operations (such as train, transform, or inference). These specified column(s)
137
- will remain untouched throughout the process. This option is helpful in scenarios
138
- requiring automatic input_cols inference, but need to avoid using specific
139
- columns, like index columns, during training or inference.
140
-
141
- drop_input_cols: Optional[bool], default=False
142
- If set, the response of predict(), transform() methods will not contain input columns.
143
153
  """
144
154
 
145
155
  def __init__( # type: ignore[no-untyped-def]
@@ -166,7 +176,7 @@ class RidgeClassifierCV(BaseTransformer):
166
176
  self.set_passthrough_cols(passthrough_cols)
167
177
  self.set_drop_input_cols(drop_input_cols)
168
178
  self.set_sample_weight_col(sample_weight_col)
169
- deps = set(SklearnWrapperProvider().dependencies)
179
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
170
180
 
171
181
  self._deps = list(deps)
172
182
 
@@ -180,13 +190,14 @@ class RidgeClassifierCV(BaseTransformer):
180
190
  args=init_args,
181
191
  klass=sklearn.linear_model.RidgeClassifierCV
182
192
  )
183
- self._sklearn_object = sklearn.linear_model.RidgeClassifierCV(
193
+ self._sklearn_object: Any = sklearn.linear_model.RidgeClassifierCV(
184
194
  **cleaned_up_init_args,
185
195
  )
186
196
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
187
197
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
188
198
  self._snowpark_cols: Optional[List[str]] = self.input_cols
189
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
199
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
200
+ self._autogenerated = True
190
201
 
191
202
  def _get_rand_id(self) -> str:
192
203
  """
@@ -242,54 +253,48 @@ class RidgeClassifierCV(BaseTransformer):
242
253
  self
243
254
  """
244
255
  self._infer_input_output_cols(dataset)
245
- if isinstance(dataset, pd.DataFrame):
246
- assert self._sklearn_object is not None # keep mypy happy
247
- self._sklearn_object = self._handlers.fit_pandas(
248
- dataset,
249
- self._sklearn_object,
250
- self.input_cols,
251
- self.label_cols,
252
- self.sample_weight_col
253
- )
254
- elif isinstance(dataset, DataFrame):
255
- self._fit_snowpark(dataset)
256
- else:
257
- raise TypeError(
258
- f"Unexpected dataset type: {type(dataset)}."
259
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
260
- )
256
+ if isinstance(dataset, DataFrame):
257
+ session = dataset._session
258
+ assert session is not None # keep mypy happy
259
+ # Validate that key package version in user workspace are supported in snowflake conda channel
260
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
261
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
262
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
263
+
264
+ # Specify input columns so column pruning will be enforced
265
+ selected_cols = self._get_active_columns()
266
+ if len(selected_cols) > 0:
267
+ dataset = dataset.select(selected_cols)
268
+
269
+ self._snowpark_cols = dataset.select(self.input_cols).columns
270
+
271
+ # If we are already in a stored procedure, no need to kick off another one.
272
+ if SNOWML_SPROC_ENV in os.environ:
273
+ statement_params = telemetry.get_function_usage_statement_params(
274
+ project=_PROJECT,
275
+ subproject=_SUBPROJECT,
276
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
277
+ api_calls=[Session.call],
278
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
279
+ )
280
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
281
+ pd_df.columns = dataset.columns
282
+ dataset = pd_df
283
+
284
+ model_trainer = ModelTrainerBuilder.build(
285
+ estimator=self._sklearn_object,
286
+ dataset=dataset,
287
+ input_cols=self.input_cols,
288
+ label_cols=self.label_cols,
289
+ sample_weight_col=self.sample_weight_col,
290
+ autogenerated=self._autogenerated,
291
+ subproject=_SUBPROJECT
292
+ )
293
+ self._sklearn_object = model_trainer.train()
261
294
  self._is_fitted = True
262
295
  self._get_model_signatures(dataset)
263
296
  return self
264
297
 
265
- def _fit_snowpark(self, dataset: DataFrame) -> None:
266
- session = dataset._session
267
- assert session is not None # keep mypy happy
268
- # Validate that key package version in user workspace are supported in snowflake conda channel
269
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
270
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
271
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
272
-
273
- # Specify input columns so column pruning will be enforced
274
- selected_cols = self._get_active_columns()
275
- if len(selected_cols) > 0:
276
- dataset = dataset.select(selected_cols)
277
-
278
- estimator = self._sklearn_object
279
- assert estimator is not None # Keep mypy happy
280
-
281
- self._snowpark_cols = dataset.select(self.input_cols).columns
282
-
283
- self._sklearn_object = self._handlers.fit_snowpark(
284
- dataset,
285
- session,
286
- estimator,
287
- ["snowflake-snowpark-python"] + self._get_dependencies(),
288
- self.input_cols,
289
- self.label_cols,
290
- self.sample_weight_col,
291
- )
292
-
293
298
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
294
299
  if self._drop_input_cols:
295
300
  return []
@@ -477,11 +482,6 @@ class RidgeClassifierCV(BaseTransformer):
477
482
  subproject=_SUBPROJECT,
478
483
  custom_tags=dict([("autogen", True)]),
479
484
  )
480
- @telemetry.add_stmt_params_to_df(
481
- project=_PROJECT,
482
- subproject=_SUBPROJECT,
483
- custom_tags=dict([("autogen", True)]),
484
- )
485
485
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
486
486
  """Predict class labels for samples in `X`
487
487
  For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.predict]
@@ -535,11 +535,6 @@ class RidgeClassifierCV(BaseTransformer):
535
535
  subproject=_SUBPROJECT,
536
536
  custom_tags=dict([("autogen", True)]),
537
537
  )
538
- @telemetry.add_stmt_params_to_df(
539
- project=_PROJECT,
540
- subproject=_SUBPROJECT,
541
- custom_tags=dict([("autogen", True)]),
542
- )
543
538
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
544
539
  """Method not supported for this class.
545
540
 
@@ -596,7 +591,8 @@ class RidgeClassifierCV(BaseTransformer):
596
591
  if False:
597
592
  self.fit(dataset)
598
593
  assert self._sklearn_object is not None
599
- return self._sklearn_object.labels_
594
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
595
+ return labels
600
596
  else:
601
597
  raise NotImplementedError
602
598
 
@@ -632,6 +628,7 @@ class RidgeClassifierCV(BaseTransformer):
632
628
  output_cols = []
633
629
 
634
630
  # Make sure column names are valid snowflake identifiers.
631
+ assert output_cols is not None # Make MyPy happy
635
632
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
636
633
 
637
634
  return rv
@@ -642,11 +639,6 @@ class RidgeClassifierCV(BaseTransformer):
642
639
  subproject=_SUBPROJECT,
643
640
  custom_tags=dict([("autogen", True)]),
644
641
  )
645
- @telemetry.add_stmt_params_to_df(
646
- project=_PROJECT,
647
- subproject=_SUBPROJECT,
648
- custom_tags=dict([("autogen", True)]),
649
- )
650
642
  def predict_proba(
651
643
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
652
644
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -687,11 +679,6 @@ class RidgeClassifierCV(BaseTransformer):
687
679
  subproject=_SUBPROJECT,
688
680
  custom_tags=dict([("autogen", True)]),
689
681
  )
690
- @telemetry.add_stmt_params_to_df(
691
- project=_PROJECT,
692
- subproject=_SUBPROJECT,
693
- custom_tags=dict([("autogen", True)]),
694
- )
695
682
  def predict_log_proba(
696
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
697
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -728,16 +715,6 @@ class RidgeClassifierCV(BaseTransformer):
728
715
  return output_df
729
716
 
730
717
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
731
- @telemetry.send_api_usage_telemetry(
732
- project=_PROJECT,
733
- subproject=_SUBPROJECT,
734
- custom_tags=dict([("autogen", True)]),
735
- )
736
- @telemetry.add_stmt_params_to_df(
737
- project=_PROJECT,
738
- subproject=_SUBPROJECT,
739
- custom_tags=dict([("autogen", True)]),
740
- )
741
718
  def decision_function(
742
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
743
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -840,11 +817,6 @@ class RidgeClassifierCV(BaseTransformer):
840
817
  subproject=_SUBPROJECT,
841
818
  custom_tags=dict([("autogen", True)]),
842
819
  )
843
- @telemetry.add_stmt_params_to_df(
844
- project=_PROJECT,
845
- subproject=_SUBPROJECT,
846
- custom_tags=dict([("autogen", True)]),
847
- )
848
820
  def kneighbors(
849
821
  self,
850
822
  dataset: Union[DataFrame, pd.DataFrame],
@@ -904,9 +876,9 @@ class RidgeClassifierCV(BaseTransformer):
904
876
  # For classifier, the type of predict is the same as the type of label
905
877
  if self._sklearn_object._estimator_type == 'classifier':
906
878
  # label columns is the desired type for output
907
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
879
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
908
880
  # rename the output columns
909
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
881
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
910
882
  self._model_signature_dict["predict"] = ModelSignature(inputs,
911
883
  ([] if self._drop_input_cols else inputs)
912
884
  + outputs)