snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Perceptron(BaseTransformer):
|
57
58
|
r"""Linear perceptron classifier
|
58
59
|
For more details on this class, see [sklearn.linear_model.Perceptron]
|
@@ -61,6 +62,50 @@ class Perceptron(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
64
109
|
penalty: {'l2','l1','elasticnet'}, default=None
|
65
110
|
The penalty (aka regularization term) to be used.
|
66
111
|
|
@@ -137,42 +182,6 @@ class Perceptron(BaseTransformer):
|
|
137
182
|
When set to True, reuse the solution of the previous call to fit as
|
138
183
|
initialization, otherwise, just erase the previous solution. See
|
139
184
|
:term:`the Glossary <warm_start>`.
|
140
|
-
|
141
|
-
input_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that contain features.
|
143
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
144
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
145
|
-
parameters are considered input columns.
|
146
|
-
|
147
|
-
label_cols: Optional[Union[str, List[str]]]
|
148
|
-
A string or list of strings representing column names that contain labels.
|
149
|
-
This is a required param for estimators, as there is no way to infer these
|
150
|
-
columns. If this parameter is not specified, then object is fitted without
|
151
|
-
labels (like a transformer).
|
152
|
-
|
153
|
-
output_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that will store the
|
155
|
-
output of predict and transform operations. The length of output_cols must
|
156
|
-
match the expected number of output columns from the specific estimator or
|
157
|
-
transformer class used.
|
158
|
-
If this parameter is not specified, output column names are derived by
|
159
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
160
|
-
column names work for estimator's predict() method, but output_cols must
|
161
|
-
be set explicitly for transformers.
|
162
|
-
|
163
|
-
sample_weight_col: Optional[str]
|
164
|
-
A string representing the column name containing the sample weights.
|
165
|
-
This argument is only required when working with weighted datasets.
|
166
|
-
|
167
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
168
|
-
A string or a list of strings indicating column names to be excluded from any
|
169
|
-
operations (such as train, transform, or inference). These specified column(s)
|
170
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
171
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
172
|
-
columns, like index columns, during training or inference.
|
173
|
-
|
174
|
-
drop_input_cols: Optional[bool], default=False
|
175
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
176
185
|
"""
|
177
186
|
|
178
187
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -209,7 +218,7 @@ class Perceptron(BaseTransformer):
|
|
209
218
|
self.set_passthrough_cols(passthrough_cols)
|
210
219
|
self.set_drop_input_cols(drop_input_cols)
|
211
220
|
self.set_sample_weight_col(sample_weight_col)
|
212
|
-
deps = set(
|
221
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
213
222
|
|
214
223
|
self._deps = list(deps)
|
215
224
|
|
@@ -233,13 +242,14 @@ class Perceptron(BaseTransformer):
|
|
233
242
|
args=init_args,
|
234
243
|
klass=sklearn.linear_model.Perceptron
|
235
244
|
)
|
236
|
-
self._sklearn_object = sklearn.linear_model.Perceptron(
|
245
|
+
self._sklearn_object: Any = sklearn.linear_model.Perceptron(
|
237
246
|
**cleaned_up_init_args,
|
238
247
|
)
|
239
248
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
240
249
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
241
250
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
242
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Perceptron.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
251
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Perceptron.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
252
|
+
self._autogenerated = True
|
243
253
|
|
244
254
|
def _get_rand_id(self) -> str:
|
245
255
|
"""
|
@@ -295,54 +305,48 @@ class Perceptron(BaseTransformer):
|
|
295
305
|
self
|
296
306
|
"""
|
297
307
|
self._infer_input_output_cols(dataset)
|
298
|
-
if isinstance(dataset,
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
self.
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
308
|
+
if isinstance(dataset, DataFrame):
|
309
|
+
session = dataset._session
|
310
|
+
assert session is not None # keep mypy happy
|
311
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
312
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
313
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
314
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
315
|
+
|
316
|
+
# Specify input columns so column pruning will be enforced
|
317
|
+
selected_cols = self._get_active_columns()
|
318
|
+
if len(selected_cols) > 0:
|
319
|
+
dataset = dataset.select(selected_cols)
|
320
|
+
|
321
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
322
|
+
|
323
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
324
|
+
if SNOWML_SPROC_ENV in os.environ:
|
325
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
326
|
+
project=_PROJECT,
|
327
|
+
subproject=_SUBPROJECT,
|
328
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Perceptron.__class__.__name__),
|
329
|
+
api_calls=[Session.call],
|
330
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
331
|
+
)
|
332
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
333
|
+
pd_df.columns = dataset.columns
|
334
|
+
dataset = pd_df
|
335
|
+
|
336
|
+
model_trainer = ModelTrainerBuilder.build(
|
337
|
+
estimator=self._sklearn_object,
|
338
|
+
dataset=dataset,
|
339
|
+
input_cols=self.input_cols,
|
340
|
+
label_cols=self.label_cols,
|
341
|
+
sample_weight_col=self.sample_weight_col,
|
342
|
+
autogenerated=self._autogenerated,
|
343
|
+
subproject=_SUBPROJECT
|
344
|
+
)
|
345
|
+
self._sklearn_object = model_trainer.train()
|
314
346
|
self._is_fitted = True
|
315
347
|
self._get_model_signatures(dataset)
|
316
348
|
return self
|
317
349
|
|
318
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
319
|
-
session = dataset._session
|
320
|
-
assert session is not None # keep mypy happy
|
321
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
322
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
323
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
324
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
325
|
-
|
326
|
-
# Specify input columns so column pruning will be enforced
|
327
|
-
selected_cols = self._get_active_columns()
|
328
|
-
if len(selected_cols) > 0:
|
329
|
-
dataset = dataset.select(selected_cols)
|
330
|
-
|
331
|
-
estimator = self._sklearn_object
|
332
|
-
assert estimator is not None # Keep mypy happy
|
333
|
-
|
334
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
335
|
-
|
336
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
337
|
-
dataset,
|
338
|
-
session,
|
339
|
-
estimator,
|
340
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
341
|
-
self.input_cols,
|
342
|
-
self.label_cols,
|
343
|
-
self.sample_weight_col,
|
344
|
-
)
|
345
|
-
|
346
350
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
347
351
|
if self._drop_input_cols:
|
348
352
|
return []
|
@@ -530,11 +534,6 @@ class Perceptron(BaseTransformer):
|
|
530
534
|
subproject=_SUBPROJECT,
|
531
535
|
custom_tags=dict([("autogen", True)]),
|
532
536
|
)
|
533
|
-
@telemetry.add_stmt_params_to_df(
|
534
|
-
project=_PROJECT,
|
535
|
-
subproject=_SUBPROJECT,
|
536
|
-
custom_tags=dict([("autogen", True)]),
|
537
|
-
)
|
538
537
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
539
538
|
"""Predict class labels for samples in X
|
540
539
|
For more details on this function, see [sklearn.linear_model.Perceptron.predict]
|
@@ -588,11 +587,6 @@ class Perceptron(BaseTransformer):
|
|
588
587
|
subproject=_SUBPROJECT,
|
589
588
|
custom_tags=dict([("autogen", True)]),
|
590
589
|
)
|
591
|
-
@telemetry.add_stmt_params_to_df(
|
592
|
-
project=_PROJECT,
|
593
|
-
subproject=_SUBPROJECT,
|
594
|
-
custom_tags=dict([("autogen", True)]),
|
595
|
-
)
|
596
590
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
597
591
|
"""Method not supported for this class.
|
598
592
|
|
@@ -649,7 +643,8 @@ class Perceptron(BaseTransformer):
|
|
649
643
|
if False:
|
650
644
|
self.fit(dataset)
|
651
645
|
assert self._sklearn_object is not None
|
652
|
-
|
646
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
647
|
+
return labels
|
653
648
|
else:
|
654
649
|
raise NotImplementedError
|
655
650
|
|
@@ -685,6 +680,7 @@ class Perceptron(BaseTransformer):
|
|
685
680
|
output_cols = []
|
686
681
|
|
687
682
|
# Make sure column names are valid snowflake identifiers.
|
683
|
+
assert output_cols is not None # Make MyPy happy
|
688
684
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
689
685
|
|
690
686
|
return rv
|
@@ -695,11 +691,6 @@ class Perceptron(BaseTransformer):
|
|
695
691
|
subproject=_SUBPROJECT,
|
696
692
|
custom_tags=dict([("autogen", True)]),
|
697
693
|
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
694
|
def predict_proba(
|
704
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
705
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -740,11 +731,6 @@ class Perceptron(BaseTransformer):
|
|
740
731
|
subproject=_SUBPROJECT,
|
741
732
|
custom_tags=dict([("autogen", True)]),
|
742
733
|
)
|
743
|
-
@telemetry.add_stmt_params_to_df(
|
744
|
-
project=_PROJECT,
|
745
|
-
subproject=_SUBPROJECT,
|
746
|
-
custom_tags=dict([("autogen", True)]),
|
747
|
-
)
|
748
734
|
def predict_log_proba(
|
749
735
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
750
736
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -781,16 +767,6 @@ class Perceptron(BaseTransformer):
|
|
781
767
|
return output_df
|
782
768
|
|
783
769
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
784
|
-
@telemetry.send_api_usage_telemetry(
|
785
|
-
project=_PROJECT,
|
786
|
-
subproject=_SUBPROJECT,
|
787
|
-
custom_tags=dict([("autogen", True)]),
|
788
|
-
)
|
789
|
-
@telemetry.add_stmt_params_to_df(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
770
|
def decision_function(
|
795
771
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
796
772
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -893,11 +869,6 @@ class Perceptron(BaseTransformer):
|
|
893
869
|
subproject=_SUBPROJECT,
|
894
870
|
custom_tags=dict([("autogen", True)]),
|
895
871
|
)
|
896
|
-
@telemetry.add_stmt_params_to_df(
|
897
|
-
project=_PROJECT,
|
898
|
-
subproject=_SUBPROJECT,
|
899
|
-
custom_tags=dict([("autogen", True)]),
|
900
|
-
)
|
901
872
|
def kneighbors(
|
902
873
|
self,
|
903
874
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -957,9 +928,9 @@ class Perceptron(BaseTransformer):
|
|
957
928
|
# For classifier, the type of predict is the same as the type of label
|
958
929
|
if self._sklearn_object._estimator_type == 'classifier':
|
959
930
|
# label columns is the desired type for output
|
960
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
931
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
961
932
|
# rename the output columns
|
962
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
933
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
963
934
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
964
935
|
([] if self._drop_input_cols else inputs)
|
965
936
|
+ outputs)
|